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Abstract

This thesis develops a specification of return dynamics that incorporates price thresholds

for volatility forecasting. Because the asset price volatility exhibits a sharp change in the

volatility and long memory, it is challenging to incorporate these characteristics into the

model at the same time. For example, GARCH has a tradeoff between the reproduction

of these two characteristics. On the other hand, the Markov Switching (MS) model can

achieve these features simultaneously. However, traditionally, the MS model assumes a

constant transition probability of regime-switching. Moreover, the MS model tends to lack

enough states to match the variety of volatility distribution since it is difficult to extend

beyond a few economic states.

The new forecasting approach is to specify a time-varying transition matrix of the MS

model in which the relative position of an asset price to its threshold determines future

volatility. This price threshold is defined by multiplying an empirically determined ratio

by the observed moving average. Then, the approach relates the probabilities of the current

price crossing over the price thresholds to the transition probabilities of the states. The

model has a closed-form likelihood, and its parameters can be estimated by the maximum

likelihood estimation. The main benefit of this specification is two folds. First, the model

can endogenously determine the time-varying transition probability of regime-switching.

As far as we can get the time series of the asset price, the model can specify the time-

varying transition probability of the MS model. Second, extending it to a multiple-state

model is easy, which has been a significant challenge to the traditional MS model, where



the number of parameters must increase exponentially. In the proposed model, only adding

one more parameter to the three-state model accepts to change the number of states from

three to infinity.

The first chapter establishes the foundation of the model with three states. Then, the

second chapter extends the three-states model to the multi-state model. The thesis evaluates

the point forecast, interval forecast, and density forecast in each chapter by the proposed

model. The first chapter examines the performance of the out-of-sample forecast from

the proposed model with the competing models, such as the traditional constant transition

probability MS model and GARCH (1,1) model. As a result, the proposed three-state model

outperforms competing models for forecasting the return distribution. The second chapter

conducts the out-of-sample analysis by increasing the number of states of the proposed

model. As a result, the second chapter shows that extending the number of states improves

the model’s forecasting ability.

The proposed model’s practical application would be to use it as an indicator of dynamic

asset allocation, conditional on the filtered economic states. Also, the model is helpful for

risk management monitoring. For future research, it will be interesting to use the model’s

characteristic of endogenous time-varying transition probability to study long memory’s

origin and appearance in volatility.
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Forecasting Volatility With Price Thresholds

Nobuaki Kato1

31st May 2021

Abstract

This paper develops a specification of return dynamics that incorporates price thresh-

olds for volatility forecasting. The new forecasting approach is to specify a time-

varying transition matrix of the Markov Switching (MS) model in which the relative

position of an asset price to its threshold determines future volatility. This price thresh-

old is defined by multiplying an empirically determined ratio to the observed moving

average. Then, the approach relates the probabilities of the current price crossing

over the price thresholds to the transition probabilities of the states. The model has a

closed-form likelihood, and its parameters can be estimated by the maximum likeli-

hood estimation. The paper evaluates the point forecast, interval forecast, and density

forecast by the proposed model and the competing models, such as the constant transi-

tion probability MS model and GARCH (1,1) model, from the out-of-sample of CRSP

S&P 500 return data. As a result, the proposed model outperforms competing models

for forecasting the return distribution.

JEL classification: C13; C32; G17

Keywords: Time-varying transition probabilities, Markov switching, maximum likeli-

hood, price threshold, moving average, out-of-sample forecasts

1EDHEC Business School (nobuaki.kato@edhec.com). I am indebted to Laurent Calvet for his guidance
and various helpful advice through my research. I am grateful to Abraham Lioui, Christophe Croux, Ichiro
Tange, Mirco Rubin, Nikolaos Tessaromatis, Raman Uppal, Riccardo Rebonato, and Vladislav Gounas
for their thoughtful comments and suggestions. I am also thankful to Brigitte Bogaerts-Chevillotte and
Mathilde Legrand for various logistic supports.
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1.1 Introduction

Modeling and forecasting accurate asset return distribution is an important problem for

investors and risk managers. Investors/asset managers allocate assets dynamically based on

the estimate of the economic conditions, expecting they can maximize wealth and minimize

loss better than a naïve static allocation. Risk managers need to quantify the appropriate

risks associated with these portfolio decisions and correctly assign risk budgets. Return

distributions are driven by the underlying state variables. However, because the underlying

states are not observable in general, asset managers and risk managers may use several

indicators to infer the latent regime. The Markov Switching (MS) model can derive one

such indicator.

Goldfeld and Quandt (1973) and Cosslett and Lee (1985) pioneered the MS model, and

Hamilton (1989) applied it to macroeconomic analysis. The MS model is a widely used

econometric model that can filter the latent states from observed time series and describe a

corresponding volatility process conditional on such states. The model is practical and easy

to employ, as a few parameters govern its switching dynamics via a transition probability

matrix dependent only on the particular periods of previous states. Since then, the MS

model is popularly used in various applications, such as business cycle analysis, monetary

policy studies, and volatility forecasts in financial time series (Hamilton and Raj, 2002).

However, in econometrics, most of these applications use constant transition probabil-

ities (CTP). As Diebold et al. (1994) and Filardo (1994) argue, the CTP is not realistic

because the underlying economic condition changes over time. MacRae (1977) considers

that the transition probabilities vary in response to the previous period’s aggregated exoge-

nous variables. Diebold et al. (1994) and Filardo (1994) introduce time-varying transition

probabilities (TVTP) as a logistic function of exogenous variables and past returns. By

specifying the TVTP, we may improve the state’s predictability and a better knowledge of

the return distribution.

Because the exogenous variables’ economic specification to TVTP was initially left for

3



further research, many researchers searched for suitable candidates for these variables. Fi-

lardo (1998) states that an exogenous variable must be conditionally uncorrelated with

the Markov process state. Gray (1996) and Fong and See (2002) assume the exogenous

variable as a level of the short rate and derive that the TVTP is a weighted average of

switching probabilities from low regime to high regime and probabilities from high regime

to low regime. Van Norden and Schaller (1997) specify the exogenous variable as a price-

dividend ratio. Peria (2002) uses five macroeconomic variables2, and Yuan (2011) also

examines four macroeconomic comparators for the exogenous variables in exchange rate

application3.

One problem with these types of the specification is that the model becomes vulnerable

to misspecification risk. If we use macroeconomic variables, it is not handy to use such

a model for asset allocation quickly as the observations are generally infrequent. More-

over, it is not easy to use the same economic model for different asset classes or different

types of analysis. For example, there is little economic reason to use purchasing power

parity for detecting a regime in the stock market. Thus, depending on the subject of the

analysis, researchers must change the exogenous variables every time. Rather than find-

ing economically meaningful exogenous variables, I posit that the empirical prices already

contain ample information, allowing econometricians to extract the transition probabilities

directly from the data.

This paper defines the TVTP of the MS model endogenously through the market price.

As Hayek (1945) states and the market microstructure literature shows through transac-

tions by the informed traders, the market price contains rich information, and it reasonably

reflects the current economic condition4. Further, as Morck et al. (1990) and Bond et al.

2Peria (2002) models TVTP by the growth of domestic credit, the ratio of imports to exports, the real
exchange rate, the unemployment rate, and the fiscal deficit.

3Yuan (2011) examines the purchasing power parity, the linear combination of money supply and economic
output, the output from real interest rate differential model, the output from portfolio balance model

4See Wilson (1974), Milgrom (1979), Glosten and Milgrom (1985), Kyle (1985), Palfrey (1985), and Easley
and O’Hara (1987) (1991) (1992) for the examples.
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(2012) show, the asset price movement has a feedback effect on the real economy. Hence,

the price is not only a helpful guide to know the current underlying state but also helps to

infer the future state. From this point of view, I assume that the sudden deviation from the

current price level in unusual magnitude is large enough to impact the real economy, and

therefore, implies the change in the underlying state.

Volatility exhibits two well-documented features. One is volatility asymmetry. There

is a negative correlation between stock returns and return volatility, where when the stock

price increases, the volatility tends to decrease, and when the price decreases, the volatility

tends to increase5. Therefore, we can specify different volatility regimes according to the

price direction (up or down). Another is a long memory. Once a shock in the volatility is

induced, it persists over multiple periods. If we consider these two features, it is reasonable

to consider that the significant price movement triggers a change in volatility magnitude and

persists for some time. This phenomenon is effectively regime-switching. For example, if

the asset price crashes dramatically in one day (e.g., near 10% by dot-com bubble crash and

Lehman Brothers bankruptcy, or 20% on Black Monday), the volatility increases, implying

that the market has entered in a high volatility regime. Contrary, if the asset price jumps

in one day (e.g., 5% by "Whatever it takes" speech given by then ECB governor Mario

Draghi), it may imply that the market has entered a low volatility regime.

How much price change enough to switch the regime (e.g., 5% or 10% in the above

examples) can be measured by a distance between a latent "trigger" price level and the

current market price. If the market price crosses this latent price level, it triggers a change

in the underlying economic condition. This intuition is similar to the technical analysis

popularly used by the practitioners, which see the trend change when the price breaks

support or resistance level. To estimate this latent price threshold empirically, we can apply

5There are two possible reasons which cause this volatility asymmetry. One reason could be through a
firm’s leverage, which increases when the stock price decreases (leverage effect). Another reason is
through volatility feedback where the future rise in volatility must be compensated by the rise in return,
therefore the current price must drop (risk premium). See Black (1976), Christie (1982), French et al.
(1987) and a good review by Bekaert and Wu (2000).

5



the likelihood estimation or the generalized method of moment.

When we posit the existence of such a price threshold, we can relate the distance of the

current asset price from this threshold into a probability of the current asset price crossing

over this threshold level. This paper defines this probability as the transition probability

of the regime-switching model. The above specification of the probability is analogous to

computing an exercise probability of out-of-the-money European option security (Black

and Scholes, 1973) or a firm’s default probability (Merton, 1973). In the TVTP setting, the

strike price is equal to the threshold (or "border") of the two different economic regimes,

and the maturity is one day. This specification brings the benefit of only requiring the price

dynamics. It is free from specifying which exogenous variable matters to the specifica-

tion of the economic model of transition probabilities, a central discussion of the literature

for a long time. Also, because the model is independent of the exogenous variables spe-

cific to any particular asset class, we can apply the same principle to several asset classes

(e.g., stocks, fixed incomes, commodities). Moreover, it is not necessary to consider the

infrequency of the data, which is inevitable for macroeconomic data.

There are a few observation-driven models proposed in the literature. Engel and Hakkio

examine EMS exchange rates (1996), which also uses a distance of the price level from

its band as an input to the logistic function. Engel and Hakkio’s approach found that the

volatility increases when the exchange rates rapidly go close to the edge of ERM bands6.

However, their analysis is specific to the ERM band, which does not exist anymore. An-

other example is Bazzi et al. (2016). They take an approach that specifies the transition

probabilities as a specific transformation of lagged observations. The authors generate the

innovation of the time-varying probability by the score of the predictive likelihood func-

tion7 This approach determines the parameter which drives the transition probabilities by

6Before the introduction of euros, European Monertary System (EMS) controlled the exchange rates of
currencies in the Exchange Rate Mechanism (ERM)

7Bazzi et al. (2016) uses econometric approach called Generalized Autoregressive Score (GAS), developed
by Creal et al. (2013).
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the steepest ascent (Newton) method on the conditional density of the previous point of

time t−1 for the model’s local fit at time t. While this method seems powerful, it is based

on a purely econometric technique, and it is challenging to grasp fundamental economics

intuitively. Because asset managers and risk managers often encounter an occasion that

requires an explanation of the economics behind it, it is not easy to translate the economics

of the model’s result. The last example is Wang et al. (2019). They specify the transition

probability as a linear combination of change in realized volatility8. However, the authors

do not provide much economic rationale for this specification.

This paper’s main contribution is to derive TVTP from observing the time series with-

out requiring any assumption on the exogenous variable, but with some intuitive eco-

nomics. The paper relates some concepts on market microstructure and technical analysis

to the econometric approach. The specification is straightforward, parsimonious, and has a

closed-form, so the Maximum Likelihood Estimation can easily estimate the parameters.

The remainder of the paper is organized as follows: Section 1.2 develops the TVTP

model. Section 1.3 presents an empirical analysis of TVTP and provides an in-sample

comparison of simulated return distributions. Section 1.4 conducts out-of-sample analysis;

point forecast, interval forecast, and density forecast. Section 1.5 concludes.

1.2 TVTP Model

1.2.1 Motivation

There are two fundamental premises in this paper. First, the security price contains rich

information, and thus, we can filter the underlying economic state by observing the current

price. Second, the security price movement has a feedback effect on the economic state.

Therefore, we can infer the future states by observing the price evolution.

For the first premise, if the market is efficient (Fama, 1970), the price reflects all the

8I will explain the realized volatility measure in out-of-sample section of this paper.
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relevant information. Even if the price does not always contain the full relevant information

contemporaneously, it will reveal the underlying information over time through insider

transactions9. On the other hand, each market participant may trade for different reasons.

Even in this case, the price aggregates the various pieces of information and collectively

converges to the underlying value10

The second premise is more subtle than the first one. Traditionally, the literature assumes

that the price evolution in financial markets has little or no effect on the real economy.

However, Morck et al. (1990) and Bond et al. (2012) argue a feedback effect where the

prices affect the decision makers’ actions of the firm. This feedback arises because the

decision-makers, even though they are supposed to be most informed, also use the infor-

mation inherent in the price to guide corporate decisions (Chen et al., 2007, Bakke and

Whited, 2014). The decision-makers do not necessarily have perfect information, and the

market as a whole can be more informed than the insiders (Grossman, 1976). Additionally,

the firm managers’ compensations are generally tied to the firm’s share price. Moreover,

credit rating agencies and regulators of banking who influence the firm’s cash flows mon-

itor the market prices very closely. Thus, the managers’ actions will be influenced by the

expected outcome from the stock price movement.

The price movement influences financial-market traders as well. Dow et al. (2017) show

how a slight decline in fundamentals may reduce price efficiency and amplify the original

adverse economic shocks. In their model, a firm manager decides whether to invest or not.

However, for the decision-making, the manager relies on some information reflected in the

company’s stock price, which implies the investment is good or bad. This information is

produced by speculative traders who are informed and motivated by trading profit. How-

ever, speculators collect information only when their marginal benefit exceeds the cost of

acquiring information (Grossman and Stiglitz, 1980). If the fewer the speculators are will-

9Glosten and Milgrom (1985), Kyle (1985), Easley and O’Hara (1987), (1991), (1992), for example.
10See Wilson (1974), Milgrom (1979), and Palfrey (1985).
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ing to acquire the information and play the game, the less information is reflected in the

price, and the less sensitive the price becomes to the firm’s manager’s decision. However,

on the other hand, if a risk-averse manager thinks the stock price to be irrelevant to her

decision, she does not make any investment. Then, if the speculators see that the firm’s

manager does not invest in increasing the firm’s value, they may not expect a benefit that

exceeds the cost of information acquisition. Thus, if speculators foresee the manager’s

decision not to invest, they find that the information acquisition is less profitable than the

firm’s manager would have invested. This reluctance to trade erodes the price efficiency

further. Therefore, even if a decline in fundamentals is small initially, it reduces the prob-

ability of a firm’s investment and discourages speculators from producing information. As

a result, the price becomes less efficient, and the firm’s investment declines further.

From the above discussion, it seems that the observed market price can influence the real

economy. Analyzing the price dynamics serves as a clue to infer the underlying economic

state and influences the future latent state. When an economic regime switches from one to

another, there must be a trigger of economic state change, reflected in the price. Once the

trigger is exercised, the price movement direction could indicate which economic regime

we are in. What is essential to know is how far the current asset price level hovers from this

trigger. If the price is close to the trigger, it is more likely to cross this level. If the price is

far from the trigger, it is less probable to cross the trigger. For this reason, it is reasonable to

assume that the price movement directly affects the Markov switching model’s probability

transition matrix.

1.2.2 Specification

This paper examines the basic case where there are one asset and three states of the econ-

omy in which the asset has low volatility (stable state: Ss), normal volatility (middle state:

Sm), and high volatility (volatile state: Sv). The volatility of each of the three states is

characterized such that
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σ(St) = {σs,σm,σv} ∈ R3
+

(1.1)

where σs ≡ σ(Ss), σm ≡ σ(Sm), σv ≡ σ(Sv). Then, assume that the one-period logarithmic

total return of the asset rt ≡ ln(Pt/Pt−1) conditional on St follows a process, such that

rt+1(St) = µ− σ2(St)

2
+σ(St)εt+1 (1.2)

where µ is a positive constant, εt+1 is a random variable that follows IID standard Gaus-

sians N (0,1). Here, µ is a long-run mean of return because E[ert+1] = eµ .

At time t with the state st = S j, j ∈ {s,m,v}, (given the state st−1 = Si at time t − 1,

i ∈ {s,m,v}, and the state st−2 = Sk at time t− 2, k ∈ {s,m,v}, and so on,) the transition

probability of first-order Markov chain is specified as

γi j,t ≡ P(st = S j|st−1 = Si,st−2 = Sk, ...;I1:t−1)

= P(st = S j|st−1 = Si;I1:t−1)

(1.3)

where I1:t−1 is cumulative information observed by econometrician from the past price

sequence from time t = 1 until t = t− 1. Then, the state dynamics of the MS model are

defined by the time-varying transition matrix such that

At ≡


γss,t γsm,t γsv,t

γms,t γmm,t γmv,t

γvs,t γvm,t γvv,t

 (1.4)
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This time-varying transition matrix is this paper’s contribution to the literature. Once

the time-varying transition matrix is specified, it can be easily applied to the conventional

Markov process described in Section 1.3.

1.2.3 Price Dynamics

To specify the time-varying transition matrix as in equation (1.4), suppose that there is a

feedback effect on states from the price dynamics, as discussed previously. I characterize

this feedback effect by defining two thresholds for the asset price level (upper threshold and

lower threshold), which the representative investor sets. When the asset price crosses these

thresholds instantaneously, it triggers the transition of one state to another. It is intuitive to

measure this threshold as a distance from the fundamental asset price level. Because the

fundamental asset price is not observable, I use the long-term mean as an estimator. For

a long time, practitioners have been using moving averages as a key indicator to see the

changes in the trend (the technical analysis). The literature also reports the effectiveness

of the technical analysis, which is based on a moving average11. The logic of technical

analysis can be extended to the regime-switching analysis. I consider the price dynamics

problem with the following settings: if the asset price hovers around its mean, the economy

is in a middle state Sm. On the other hand, if the price is far above its mean, the economy

enters a stable state Ss. Similarly, if the price is far below its mean, the economy enters a

volatile state Sv. The upper threshold is the mean of asset price plus some positive distance,

and the lower threshold is the mean minus some positive distance.

Switching Thresholds of Economic States

First, I begin by defining the switching thresholds for the economy in the middle state.

Given the asset price series {Pt}T
t=1, an observed exponential weighted moving average

11See Brock et al. (1992), Lo et al. (2000), Menkhoff and Taylor (2007), Neely et al. (2013) for the
discussion of the profitability and forecasting power of the moving average indicator, and Zhou and Zhu
(2013) for the equilibrium model incorporating moving average.
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(EWMA) is defined with a specific parameter δ ∈ (0,1) such that

EWMAt ≡ δPt +(1−δ )EWMAt−1

EWMA1 ≡ P1

(1.5)

then, the two threshold price levels conditional on the middle state are specified with the

previous period’s EWMA as12

Km
u,t ≡ (1+ψu)EWMAt−1

Km
l,t ≡ (1−ψl)EWMAt−1

(1.6)

where Km
u,t is the upper threshold price level during the middle state, Km

l,t is the lower thresh-

old price level during the middle state, ψu ∈ (0,1/δ−1) and ψl ∈ (0,1/δ−1) are constant.

The three economic states are defined as

St ≡


Ss if Km

u,t < Pt

Sm if Km
l,t < Pt < Km

u,t

Sv if Pt < Km
l,t

(1.7)

Therefore, from equation (1.3), the transition probabilities conditional on the middle state

can be restated as

12See Appendix A for the proof of that the price threshold at time t can be characterized by the EWMA at
time t−1, not at time t
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γms,t = P[Ss|Sm] = P[Pt > Km
u,t |St−1 = Sm;EWMAt−1]

γmv,t = P[Sv|Sm] = P[Pt < Km
l,t |St−1 = Sm;EWMAt−1]

γmm,t = P[Sm|Sm] = 1− γms,t− γmv,t

(1.8)

Similar to equation (1.6), suppose there are two thresholds of the asset price level, which

trigger an economic transition from the stable state to the middle state and the volatile state.

These thresholds conditional on the stable state are defined as

Ks
m,t ≡ (1−ψl ·λ s)EWMAt−1

Ks
l,t ≡

(1−ψl ·λ s)(1−ψl)

1+ψu
EWMAt−1

(1.9)

where λ s = σs/σm is a ratio of volatility in the stable state and the middle state.

Parameter λ serves as an adjustment factor, which controls the bandwidth of price thresh-

olds from the EWMA depending on the volatility level. Imagine if the threshold distances

from EWMA are equal across different states. It would be less probable to cross the thresh-

old from the stable states because the price fluctuates less, and it would be more probable to

cross from the volatile states because the price fluctuates more. Therefore, if the bandwidth

is unconditionally constant regardless of the state, an asset price becomes very stable for a

long time (no switch from the stable state), and the volatility memory dies out very quickly

(immediate exit from the volatile state). However, as an asset price empirically shows long

volatility memory (i,e, volatile state lasts long once the economy enters the volatile state),

the constant thresholds distance is not coherent with the data. Hence, an adjustment factor

must be introduced for the consistency. In the stable state, λ becomes smaller than 1, which

shrinks the bandwidth, and in the volatile states, λ becomes larger than 1, which expands

the bandwidth. This adjustment increases switching probability from the stable state and
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reduces switching probability from the volatile state.

Another highlight here is that the middle price threshold in the stable state, Ks
m,t , is

now lower than the EWMA. I assume the transition from the stable state to the middle

state follows the same mechanism of switching from the middle state to the volatile state.

From the stable state point of view, the middle state is more volatile. In the proposed

model’s framework, the price must go down to switch from a less volatile state to a more

volatile state. This is the same relationship between the middle state and the volatile state

in equation (1.6). If I extend this view to the switch from a stable state to a volatile state, the

price must go below the lower threshold of the stable state once, to enter the middle state,

and even go further down the lower threshold of the middle state to enter the volatile state.

This is why Ks
l,t is defined as equation (1.9). Imagine there is another price level, EMWA

′
t ,

underneath the Ks
m,t , which satisfies EWMA

′
t(1 + ψu) = EWMAt(1−ψlλ

s). Then this

EMWA
′
t can be considered as an imaginary EWMA if the economy were in the middle state

from the stable state’s perspective. This imaginary EWMA of middle state can be written

by EMWA
′
t = EWMAt× (1−ψlλ

s)/(1+ψu). Then, by using this imaginary EWMA, the

lower threshold to switch to the volatile state can be expressed as EMWA
′
t(1−ψl). Hence,

Ks
l,t is defined as equation (1.9).

The same discussion to equation (1.9) is also applied to the price thresholds in the volatile

state. Suppose there are two thresholds for the asset price level, which trigger a transition

from the volatile state to the middle state and the stable state. Conditional on the volatile

state, these thresholds are defined as

Kv
m,t ≡ (1+ψu ·λ v)EWMAt−1

Kv
u,t ≡

(1+ψu ·λ v)(1+ψu)

1−ψl
EWMAt−1

(1.10)

where λ v = σv/σm is a volatility ratio in the volatile and middle states, which is the ad-

justment factor for the price threshold distance. In the volatile state, the price threshold to
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switch back to the middle state lies above the EWMA and the threshold to switch to the

stable state lies further above.

Finally, using equation (1.3), (1.9), and (1.10), the transition probabilities conditional on

the stable state and the volatile state can be restated as,

γsm,t = P[Sm|Ss] = P[Ks
l,t < Pt < Ks

m,t |St−1 = Ss;EWMAt−1]

γsv,t = P[Sv|Ss] = P[Pt < Ks
l,t |St−1 = Ss;EWMAt−1]

γss,t = P[Ss|Ss] = 1− γsm,t− γsv,t

(1.11)

γvm,t = P[Sm|Sv] = P[Kv
m,t < Pt < Kv

u,t |St−1 = Sv;EWMAt−1]

γvs,t = P[Ss|Sv] = P[Pt > Kv
u,t |St−1 = Sv;EWMAt−1]

γvv,t = P[Sv|Sv] = 1− γvm,t− γvs,t

(1.12)

As described in the following subsection, the above specification is analogous to an exer-

cise probability of out-of-the-money European option security (Black and Scholes, 1973)

conditional on the latent states.

Transition Probabilities

Now, I quantify the next period’s state probability at time t− 1 in equations (1.8), (1.11),

and (1.12). First, I describe how to quantify the probability of price going beyond the upper

thresholds. From equation (1.2), at time t−1, the next period’s price Pt being higher than

the upper threshold level Ku,t , conditional on the state St−1 = Si, where i∈ {m,v}, is written

as
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Pt > Ki
u,t ⇔ lnPt > lnKi

u,t

⇔ lnPt−1 +µ− σ2(Si)

2
+σ(Si)εt+1 > lnKi

u,t

⇔−εt+1 <
ln
(

Pt−1
Ki

u,t

)
+µ− σ2(Si)

2

σ(Si)

(1.13)

Therefore, alike Black and Scholes (1973), if I define di
u,t such that

di
u,t ≡

ln
(

Pt−1
Ki

u,t

)
+µ− σ2(Si)

2

σ(Si)
(1.14)

then di
u,t follows IID standard Gaussian N (0,1). Thus, from equation (1.8) and (1.12),

γis,t = P[Pt > Ki
u,t |St−1 = Si] = Φ(di

u,t) (1.15)

where Φ is Gaussian cumulative distribution function. Note that, the transition probabilities

of crossing the upper threshold of time t, conditional on the state i at time t = t − 1, are

fully quantified with the information available at time t = t−1.

Similarly, to quantify the probability of price being lower than the lower threshold, by

defining d j
l,t , where j ∈ {m,s}, such that

d j
l,t ≡

ln
(

Pt−1

K j
l,t

)
+µ− σ2(S j)

2

σ(S j)
(1.16)

leads to the transition probabilities of crossing the lower threshold at time t, conditional on

the state j at time t = t−1, which can be written from equation (1.8) and (1.11) as
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γ jv,t = P[Pt < K j
l,t |St−1 = S j] = 1−Φ(d j

l,t) (1.17)

Finally, defining the threshold for transitioning to the middle state either from the stable

state or from the volatile state, dk
m,t , where k ∈ {s,v}, such that

dk
m,t ≡

ln
(

Pt−1
Kk

m,t

)
+µ− σ2(Sk)

2

σ(Sk)
(1.18)

then, from equation (1.11) and (1.12), the transition probabilities for the above conditions

are

γsm,t = P[Ks
l,t < Pt < Ks

m,t |St−1 = Ss] = Φ(ds
l,t)−Φ(ds

m,t)

γvm,t = P[Kv
l,t < Pt < Kv

m,t |St−1 = Sv] = Φ(dv
m,t)−Φ(dv

u,t)

(1.19)

From equation (1.15), (1.17), and (1.19), the transition probabilities in the matrix, equa-

tion (1.4) is restated as
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γss,t = 1− γsm,t− γsv,t

γsm,t = Φ(ds
l,t)−Φ(ds

m,t)

γsv,t = 1−Φ(ds
l,t)

γms,t = Φ(dm
u,t)

γmm,t = 1− γms,t− γmv,t

γmv,t = 1−Φ(dm
l,t)

γvs,t = Φ(dv
u,t)

γvm,t = Φ(dv
m,t)−Φ(dv

u,t)

γvv,t = 1− γvs,t− γvm,t

(1.20)

Each transition probability at time t, γi j,t , is fully characterized by the observations at time

t − 1 with the Gaussian cumulative distribution function. When the price gets close to

a threshold, the transition probability becomes high. When the price gets far from the

threshold, the transition probability becomes low. The price threshold TVTP MS model

has a closed-form likelihood, and the maximum likelihood estimation can easily estimate

its parameters. For the recapitulation, the TVTP requires only seven parameters as follows.

θ = (σs σm σv ψu ψl δ µ) ∈ R7
+

(1.21)

where σs, σm, σv are volatilities conditional on each state i ∈ {s,m,v}, ψu and ψl are price

threshold parameters, δ is an exponential moving average parameter, µ is the long-term

mean of the asset returns.
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1.3 Empirical Analysis

1.3.1 Maximum Likelihood Estimation

Now I estimate the model parameters by a historical dataset. The conditional probability

density function with three states is

ωt = ( f (rt |st = Ss,r1:t−1;θ) f (rt |st = Sm,r1:t−1;θ) f (rt |st = Sv,r1:t−1;θ))
′ (1.22)

where f (rt |st = S j,r1:t−1;θ) is

f (rt |st = S j;r1:t−1;θ) =
1√

2πσ2(S j)
exp

[
−
{rt−µ +σ2(S j)/2}2

2σ2(S j)

]
(1.23)

The filtered probabilities of the latent states conditional on the observed returns satisfy13

Π̂t =
ωt ∗ (Π̂t−1At)

[ωt ∗ (Π̂t−1At)]ι
(1.24)

where ∗ denotes element-by-element multiplication and ι = (1 1 1)′. Then the likelihood

function is written as14

lnL(θ ;r1:T ) =
T

∑
t=1

ln[ωt · (Π̂t−1At)] (1.25)

Then, the maximum likelihood estimator is defined by

13See Appendix B for the proof.
14See Appendix B for the proof.
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θ̂ML = argmax
θ

{lnL(θ ;r1:T )} (1.26)

Since the objective function of equation (1.26) is non-linear in general, it is difficult to

solve analytically. Therefore, the optimization is conducted numerically in practice.

1.3.2 Sample Data

I retrieve return data from Prof. Kenneth French’s website15. This data contains the daily

excess return on the value-weighted US equity index calculated by the Center for Re-

search in Security Prices (CRSP) over July 1st, 1926 to December 31st, 2020, which has

T = 24,896 observations. Over this period, the excess return series has a historical mean

of 0.030302% per day (about 7% per year). The Augmented Dickey-Fuller (ADF) test

(1996) brings no evidence of non-stationarity in the return data16. Using excess return has

merit compared to using raw stock return for the long time horizon analysis because it is

not affected by the interest regime change in the US in 1951 (Treasury-Federal Reserve

Accord). I construct the price level of the US equity at time t from the excess return by

Pt ≡∏
t
k=0(1+Rk), where Rt is observed excess return at time t.

1.3.3 Model Parameter Estimation

For optimizing equation (1.26), I derive the historical mean from the sample data as µ̂ =

0.030302% and use it as a calibrated value for µ17. Since the optimization process is based

15https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
16The p-value of ADF test is less than 0.01 for 0 to 20 lags.
17The reason for the calibration is because the conditional expectation of the return is µ (∵ E[ert ] = eµ ),

and I want the estimated model to be consistent with reasonable values for the long-run mean. Also,
I set optimization constraints to parameters such that σs ∈ (0.001,0.100), σm ∈ (0.001,0.100), σv ∈
(0.001,0.100), ψu ∈ (0.001,0.100), ψl ∈ (0.001,0.100), and δ ∈ (0,1). These constraints are required to
make sure that the Hessian matrix is invertible during the optimization. Therefore, I use the optimization
method in Byrd et al. (1995). This optimization method incorporates box constraints (an upper bound
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on a numerical search, initial values for the optimization influences the result. Sometimes

the optimization result get stacked at local minima. To mitigate this risk, I performed a

robustness check described at Appendix E.

Table 1 summarizes the maximum likelihood estimation results of the TVTP MS model

along with the conventional, three-state CTP MS model and GARCH(1,1) model over the

whole sample18. I use these models as benchmark models for the in-sample and out-of-

sample comparison in later sections. To see whether the proposed model is statistically

different from a no-regime model, I also conduct a Wald test for the null hypothesis where

θ0 = {σs,σm σv ψu ψl δ}= {σ̄ σ̄ σ̄ 0 0 1}, where σ̄ is long-run volatility (σ̄ = 0.010781).

The p-values for all the estimators are very close to zero (p < 0.00001). This rejects the

null hypothesis confidently.

Table 1 shows that the likelihood of the proposed model, lnL, is higher than its peers. In

general, when the number of parameters increases, the likelihood becomes higher. There-

fore, I also compared the Bayesian Information Criterion (BIC), which adjusts the likeli-

hood by penalizing the high number of parameters. The BIC criterion is given by BIC =

T−1(−2lnL+NP · lnT ) where NP is the number of free parameters in the specification of

the model. Even though the BIC penalizes CTP MS and helps GARCH(1,1) to be better

off, TVTP MS still has the lowest BIC among the peers. Note that TVTP and CTP MS

are not nested each other, but the estimated conditional volatilities (σ̂s, σ̂m, and σ̂v) are

almost at the same level. Thus the difference of the likelihood between TVTP MS and CTP

MS seems to purely come from the specification of the transition matrix (time-varying or

constant).

and a lower bound) to a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method. See Broyden
(1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970)

18The three-state CTP MS model has the same return process as the proposed model, r̃t+1(St) = µ −
σ2(St)/2+ σ(St)εt+1, but has a constant transition probability matrix. This matrix is defined as 3x3
matrix such that, A = {(1−γsm−γsv γsm γsv);(γms 1−γms−γmv γmv);(γvs γvm 1−γvs−γvs)}. GARCH(1,1)
model has the return process which follows, r̃t+1 = µ−σ2

g,t+1/2+σg,t+1εt where σ2
g,t+1 = ω2 +α(rt −

µ +σ2
g,t/2)2 +βσ2

g,t . I do the same calibration as TVTP model for maximum likelihood optimization,
such that µ = 0.030302% for the two benchmark models.
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Figure 1 shows the filtered probability of latent states by the model using the estimated

parameters. The blue area corresponds to the probability of being in the stable state Ss,

yellow is the probability of being in the middle state Sm, and red is the probability of

being in the volatile state Sv. For example, the model filters almost 100% probability of

being in a volatile state during the Great Depression (1929), the Black Monday (1987), the

Great Recession (2008), and the Covid-19 Pandemic (2020). The time average of filtered

state probabilities over the sample period was 60.47% in the stable state (π̄s ≡ ∑
T
t=1 π̂s,t =

60.47%), 30.36% in the middle state (π̄m ≡ ∑
T
t=1 π̂m,t = 30.36%), and 9.16% in the volatile

state (π̄v ≡ ∑
T
t=1 π̂v,t = 9.16%). Together with the estimates in Table 1, the expectation

of the volatility are roughly equal to the long-run volatility (E[σ2(St)]≡ ∑i={s,m,v} π̄iσ̂
2
i =

0.0109392≈ σ̄2). Therefore, the estimated parameters are consistent with the observations.

1.3.4 Return Simulation

Next, I see whether the proposed model generates a return distribution closer to the em-

pirical data than the CTP MS model and the GARCH(1,1) model. I use the estimators

in Table 1 to generate simulated return series from each model. Figure 2 shows the ob-

served logarithmic return series from the data, {rt}T
t=1 (Figure 2 (a)), and the simulated

logarithmic return series, {r̃t}T
t=1, by each of the three models (Figure 2 (b), (c), (d)). All

the graphs have exactly the same scale for the x-axis and y-axis. From Figure 2 (a), the

observed return series exhibits apparent volatility clustering, especially around the Great

Depression (1929, extremely volatile period on the left part of the chart), the Black Mon-

day (1987, middle right where the significant negative return was observed), and Lehman

Brothers bankruptcy (2008, volatile period on the right part of the graph). Also, the ob-

served return distribution shows negative skewness (the magnitude of negative returns is

larger than positive returns) with infrequent long tails. Figure (d) shows that GARCH(1,1)

can generate nice characteristics of infrequent but clear volatility clusterings like the real

returns, but the return pattern shows wild swing and is somewhat symmetric from its center
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(zero percent return). Figures (b) and (c) show that the two MS models produce a similar

magnitude of volatility as the observed return series in general conditions. The difference

between Figure (b) and (c) is return asymmetry. While CTP MS yields a nice pattern of

volatility clustering, the return distribution does not show enough skewness (or asymmetry

of returns). Though TVTP MS produces slightly more frequent spikes than its peers, the

return distribution shows clear skewness on the downside.

1.4 Out-of-sample Comparison with Alternative

Models

1.4.1 Point Forecasts

I now compare the out-of-sample performance of the three models. First, I do the maximum

likelihood estimation of each model’s parameters using only first half of observations. Ta-

ble 2 shows the maximum likelihood estimators of the parameters over the first half of the

sample data19. Again, the likelihood of the proposed model is higher than the benchmark

models, so is BIC.

To begin with, I compare how well each model performs a point forecast of volatility

over a different forecasting horizon. Here, I perform Mincer-Zarnowitz regressions (Min-

cer and Zarnowitz, 1969) of the volatility forecasts from competing models over one busi-

ness day, five business day (one week), ten business day (two weeks), twenty business day

(one month), forty business day (two months), and sixty business day (one quarter) hori-

zons. Mincer-Zarnowitz regression is a commonly used method in financial econometric

literature to evaluate the accuracy of the forecast, which can be written as

19Again, I calibrated for the mean for the optimization with the mean of returns over the fist half sample
(µ̂ = 0.031391%) for all the models. The fist half of the sample contains 12,448 observations. The same
robustness check as for the full sample is applied as shown in the Appendix E.
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σ
2
t,n = γ0 + γ1Et−nσ

2
t,n + εt (1.27)

where σ2
t,n is a variance over n days from time t − n and εt is white noise. When the

model is correctly specified, the model produces perfect variance forecasts. Thus, the null

hypothesis of the unbiased forecast implies, H0 : γ0 = 0∩ γ1 = 1.

Though the method concept is straightforward, we need to be careful that the true vari-

ance σ2
t,n is not observable. Hence, I use realized volatility as a proxy for the latent variance

as Andersen and Bollerslev (1998). If we replace the true variance σ2
t,n in equation (1.27)

with a estimate σ̂2
t,n, which is

σ̂
2
t,n = RVt,n = σ

2
t,n +ηt (1.28)

where RVt,n = ∑
t
s=t−n+1 r2

s . RVt,n is realized volatility over n day period from t−n, and ηt

is white noise and E[ηt ] = 0. Then equation (1.27) becomes

RVt,n = γ0 + γ1Et−nRVt,n +ut (1.29)

where ut = εt +ηt , and Et−nRVt,n = B−1
∑

B
k=1 R̂V t,n,k, and R̂V t,n,k is the forecast of realized

volatility over n day period at the t−n point of time from the model. The multiple-period

forecast is path-dependent and requires keeping the error term in the return specification

(equation (1.2)) for the forecast. Hence, the single-path variance forecast is noisy. There-

fore, I generate B = 10,000 paths of forecast at each point of time (t−n) for each forecast

horizon (n). Then, I take the average of the B paths of the forecast at each point of time to

get the less noisy version of the realized volatility forecast Et−nRVt,n.
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If the model concerned is correctly specified, the coefficients of Mincer-Zarnowitz will

be γ0 = 0 and γ1 = 1. Table 3 shows the result of Mincer-Zarnowitz evaluation of realized

volatility point forecast. I use the latter half of the subsample to evaluate the performance

of forecasting the realized volatility RVt,n for the dependent variable in equation (1.29).

In this subsample, there are T ′ = 12,448 observations. Table 3 also shows the p-value of

single parameter Wald test for individual parameters against the null hypothesis, such that

H0 : γ0 = 0 and H0 : γ1 = 1. Therefore, higher p-values are better because the higher the

p-values are, the less the null hypothesis is rejected. The figures in the parentheses are the

standard error with Heteroskedasticity and Autocorrelation Consistent (HAC) adjustment

using the method of Newey and West (1987), with automatic lag parameter selection (West

and Newey, 1994) as described in Appendix C.

The two MS model (TVTP and CTP) yields similar forecast pattern from the out-of-

sample observations. The result shows that MS models forecast with higher accuracy than

GARCH(1,1)’s prediction, as the intercepts are closer to zero (γ0 ≈ 0) and the slopes are

closer to one (γ1 ≈ 1). Both MS models tend to forecast the correct level of variance

magnitude in the short horizon but tend to forecast less variance in the long horizon since

γ1 monotonically increases and becomes larger than one. This tendency is opposite from

GARCH(1,1)’s pattern, where the model forecasts larger variance when the time horizon

becomes longer as γ1 monotonically decreases. Comparing the result from the two MS

models, we see there is a slight difference. The TVTP MS model is relatively better at

forecasting a longer horizon (more than twenty days) than the CTP MS model, while CTP

MS is slightly better at a shorter horizon (less than ten days).

1.4.2 Interval Forecasts

To confirm the magnitude of the swings and negative skewness of the observations from

the simulated returns (Figure 2), I evaluate the return distribution with a specific measure

that summarizes the distribution pattern. One such metric can be the Value-at-Risk metric
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(VaR). While VaR is commonly applied to a value of a portfolio, I define the estimator

of VaR by a model at time t to be the pth quantile (p ∈ [0,1]) of the conditional return

distribution over the period from time t +1 to t +n as

ˆVaRt,n(p)≡ F̂t,n(p) (1.30)

where F̂t,n is conditional return forecast distribution generated by the model. Therefore, the

model expects to experience an asset return, which goes further down the tail of the distri-

bution less than ˆVaRt,n(p) over the next n days, only p percent of the time. The accuracy of

the VaR, or unconditional coverage property, is verified by recording the number of "hit"

rates (Kupiec, 1995, Christoffersen, 1998). The "hit" function flags one when the observed

return rt exceeds the predicted ˆVaRt,n(p). The failure rate is the number of times where the

"hit" function flags over the given sample period. Denoting the observed cumulative return

over n days from time t as rt,t+n = ∑
n
k=t rk, the indicator ("hit") function which flags the

breach of the VaR is defined as

It+n(p)≡

 1 if rt,t+n < ˆVaRt,n(p)

0 if rt,t+n ≥ ˆVaRt,n(p)
(1.31)

Then the "failure" rate is written as

Ûn(p)≡ 1
T ′

T ′−n

∑
t=1

It+n(p) (1.32)

If the VaR is accurately estimated, the failure rate converges to p; Ûn(p)→ p. To ob-

tain each model’s conditional forecast distribution F̂t,n, at each time t, I simulate r̃t,t+n for
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B = 10,000 paths {r̃t,t+n}B
b=1. Then, I simply take the pth quantile of {r̃t,t+n}B

b=1 at each

time t, to assign it to ˆVaRt,n(p). Then obtaining {It+n(p)}T ′
t=1 is straightforward. From

the construction of the hit function, the time series {It+n(p)}T ′
t=1 is highly likely to have

autocorrelation. Therefore, once the {It+n(p)}T ′
t=1 series is generated, I conduct the Ljung-

Box test (1978) to evaluate whether the hit indicators exhibit autocorrelation. Since the

test statistic of the Ljung-Box test rejects the null hypothesis (H0: no autocorrelation) for

all of the generated hit series {It+n(p)}T ′
t=1 (n = 1,5,10,20,40,60) at 3% confidence level,

the hit indicator (equation (1.31)) reveals to have a strong autocorrelation. Thus, I use

Newey-West Heteroskedasticity and Autocorrelation Consistent standard errors (1987) for

the failure rate forecast as described in Appendix C.

Table 4 and Table 5 reports the failure rate of the TVTP MS model, CTP MS model and

GARCH(1,1) for n = {1,5,10,20,40,60} day forecasts and confidence level at lower tail

and upper tail, p = { 1%, 5%, 10%, 90%, 95%, 99% }. The p-value is evaluated against a

null hypothesis H0 : Ûn(p) = p. If the p-value is larger, it is less probable to reject that the

forecasted VaR level is indeed at the realized quantile from the observed returns. Therefore,

larger p-values imply better forecasts. The boldface numbers are statistically indifferent

from the target value-at-risk level p at the 3% confidence level. The result in Table 4

and Table 5 shows that the price threshold TVTP MS model forecasts a more accurate

distribution for both the lower tail and the upper tail than competing models. In one day

horizon, GARCH(1,1) slightly outperforms its peer at some levels (VaR at 5%, 10%, and

99%). However, when forecasting longer than the five-day horizon, GARCH(1,1) does not

forecast VaR well on the lower tail at all (i.e., VaR = 1%, 5%, and 10%). The TVTP and

CTP MS models compete with each other. However, at almost all the time horizons and

each percentile, the TVTP MS model shows better forecasts than CTP MS by looking at

the p-values. The only exceptions where CTP MS outperforms TVTP MS are p = 1% for

twenty, forty, and sixty days and p = 90% for ten, twenty, and forty days. The proposed

model shows a better ability to predict the VaR metric closer to the real return distribution’s
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percentile from this out-of-sample test. Therefore, we expect to do better risk management

by introducing the TVTP to the MS model than other models.

1.4.3 Density Forecasts

Lastly, I evaluate density forecasts by each model with the Probability Integral Transform

(Diebold, et al., 1998). The probability integral transform of a sequence of generated fore-

casts by a model { ft(rt,n|Ωt)}T ′
t=1 is a cumulative density function corresponding to the

density ft(rt,n) evaluated at r such that

F̂t,n(r)≡ Pt(rt,n ≤ r|Ωt) =
∫ r

−∞

ft(y)dy (1.33)

If the forecast generating model is specified correctly, the random variables Ut,n = Ft,n(yt,n)

follow an uniform distribution on the interval of [0,1]. Thus, if the probability integral

transform is closer to a uniform distribution, it can be said that the forecast is more accurate.

Therefore, I measure the distance of these two distributions and compare them among the

three models. This is an extension of the evaluation of interval forecasting, which checks

every interval of the distribution. Following Diebold et al. (1998), I look at the graphical

plot of Ut,n to see how close the probability integral transform of the forecasts is to the

uniform distribution.

Figure 3 and Figure 4 show the probability integral transform of forecasts generated

by corresponding models. Figure 3 shows the result for the short horizon, and Figure 4

illustrates the long horizon. The horizontal axis corresponds to percentile from zero to one,

and the vertical axis corresponds to the frequency for each percentile bucket. Figure 3 and

Figure 4 have a hundred buckets. In each figure, the top three charts are the probability

integral transform of forecasts by the TVTP MS model. Similarly, the three charts in the

middle row are the probability integral transform of forecasts by the CTP MS model. The
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bottom three charts are the probability integral transform of GARCH(1,1). In Figure 3,

the three charts in the left column are one-day forecasts by the corresponding models, the

center column summarizes the five-day forecasts, and the right column shows the ten-day

forecasts. Similarly, in Figure 4, the left column is twenty-day forecasts, the center column

summarizes the forty-day forecasts, and the right column shows the sixty-day forecasts.

The red horizontal lines in each chart indicate the uniform distribution, and the blue lines

are 5% distant from the uniform distribution line.

Overall, the probability integral transform of forecasts by the proposed model has the

closest distributions to the uniform distribution among the three models. Especially, the

TVTP MS model performs well at forecasting the tail probabilities. If the tail forecast is too

loose, the frequency at the tail percentile shoots up, which is seen in the distributions of the

CTP MS and GARCH (1,1) models. The graphical result here is consistent with the result

of interval forecasts seen in Table 4 and Table 5. The Cramer von-Mise (CVM) statistics

in Table 6 also confirm this graphical interpretation. As in Appendix D, the CVM criterion

measures the distances between two given distributions. Hence the smaller the CVM is, the

closer the distance between the probability integral transform and the uniform distribution,

and the better the forecast is. Table 6 shows that the price threshold TVTP mode produces

strictly smaller CVM statistics for all the forecast time horizons. The graphical result in

Figure 3, Figure 4, and the smaller CVM values in Table 6 indicate that the distribution of

the out-of-sample density forecast by the proposed model outperforms other models.

1.5 Conclusion

This paper proposes a specification of the TVTP of an MS model by measuring the distance

between the current asset price level and the hypothetical threshold price levels and com-

puting the likelihood of crossing these levels. This paper relates the crossing probability

directly to the transition probabilities without specifying the TVTP through a logistic func-
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tion and exogenous variables. The model has closed form, is parsimonious, and requires

only seven parameters to estimate. From the empirical analysis, the model is able to better

predict the return distribution of the US equity index than benchmark models such as the

CTP MS model and GARCH(1,1). I compare the out-of-sample point forecast, the out-

of-sample interval forecast, and the out-of-sample density forecast of the three models and

find that the proposed model predicts more accurate predictions. Even though this paper

uses CRSP US equity returns for the analysis, the proposed approach is not limited to equi-

ties. The model is also very handy for other asset classes since it only requires asset price

dynamics. This model’s practical application would be to use it as an indicator of dynamic

asset allocation based on the filtered regime of the capital market and as a more accurate

quantile-based risk management monitoring. One interesting future research would be to

extend the proposed model from three states to a higher number of states to describe better

the volatility clustering observed in the data. Also, the lognormal distribution assumption

in the error term of the return specification would be too strong since the return distribution

exhibits a fat tail. It is interesting to explore further the appropriate distribution.
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Abstract

This paper extends the three-state Price Threshold Volatility forecasting model (PTV-

3) developed by Kato (2021). The original PTV model assumes only a limited number

of states in the economy, which does not have enough volatility components to match

the variety of magnitude of volatility in the real world. The new model extends the

number of states to 2k+ 1 by expanding the time-varying transition probability ma-

trix with one single parameter added to the PTV model. This multi-state PTV model

(PTV-M) is parsimonious and has a closed-form likelihood. Therefore, the maximum

likelihood estimation can apply to its parameters. The paper evaluates its performance

of the point forecast, the interval forecast, and the density forecast for various state

numbers k based on the out-of-sample of CRSP S&P 500 return data. As a result, the

increase in the number of states improves the return distribution and the performance

of out-of-sample forecasting.

JEL classification: C13; C32; G17

Keywords: Time-varying transition probabilities, Markov switching, maximum likeli-
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2.1 Introduction

Accurate volatility forecast plays a central role in the risk management of financial assets.

However, assessing volatility is not an easy task because it varies significantly over time.

Even when the volatility seemed to be at a certain level at a certain point in time, it could

change dramatically at a different point in time. Also, financial asset typically shows in-

frequent but largely negative returns, which has a significant economic consequence but

is hard to capture by a single estimate because these rare events get averaged out. For

this reason, a simple standard deviation from the sample time series is not appropriate for

risk management. Therefore, there are extensive researches on volatility modeling in the

financial literature.

Several streams of the volatility models try to capture these volatility dynamics and the

negative skewness in the return distribution of the financial asset. One such stream is the

ARCH/GARCH family, beginning with Engle (1982) and Bollerslev (1986). It addresses

the sharp change in the volatility and volatility clustering exhibited in the time series ob-

servation. However, by construction, the model cannot produce a sharp change in volatility

and long memory of volatility at the same time because there is a trade-off between these

features2.

Another popular stream of volatility modeling is the Markov Switching model (MS).

Since Hamilton (1989) applied to the macroeconomic analysis, the MS model has been

widely used for financial applications3. It models the volatility conditional on the latent

states (or "regimes"). This regime switches according to transition probability, and the

switch in regime leads to a change in magnitude of volatility. Also, because this switching

2In the GARCH model, the stationary condition imposes a trade-off between the reactivity to the shocks
and the persistence. For example, the GARCH (1,1) model is written as σ2

t = ω + (α + β )σ2
t−1 +

ασ2
t−1(ε

2
t−1− 1), where σ is asset volatility, εt is white noise, ω is an intercept, α is a sensitivity to

a volatility shock, and α +β is decay speed of volatility shock. The GARCH (1,1) requires α +β < 1 to
be stationary. Therefore, if the α becomes relatively large for a stationary process, β becomes relatively
small (e.g., spikier and less persistent), and vice versa.

3See Hamilton and Raj, (2002) for the review and Calvet and Fisher (2001), (2004), (2007) for the extension.
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probability is typically low, one volatility regime tends to persist for a certain period. This

persistence leads to a nice feature of volatility clustering. Contrary to the ARCH/GARCH

family, the MS model can combine the sensitivity to the shocks and the persistence.

However, the MS model has two drawbacks. First, the typical MS models assume the

transition probability constant over time. This constant transition probability (CTP) is a

restrictive assumption (Diebold et al., 1994, Filardo, 1994) because the underlying econ-

omy changes over time, and the economic condition should impact how easy to switch

from one regime to another regime. Second, the MS model requires a large number of

states to reproduce the various magnitudes of the volatility. For example, the two-state MS

model can produce only two return distributions (for example, "stable-state" distribution

and "volatile-state" distribution). However, from the actual return observations, it is clear

that the return dynamics show more variety and have more components than the two return

distributions. Thus, while the MS model is suitable to capture the volatility dynamics "on

average," it cannot capture granular dynamics unless the model increases the number of

states.

If the number of the state is small (e.g., two-state MS model), the MS model does not

produce enough magnitude in the spike of volatility which can be occasionally seen in the

actual historical return distribution of the asset price. This lack of magnitude in volatil-

ity spike is due to the very low frequency of such volatility in the real world. Suppose a

forecasting model assumes only a small number of states. In that case, these rare volatility

spikes are ignored or averaged out because statistical methods, such as Maximum Likeli-

hood Estimation (MLE) or Generalized Method of Moment (GMM), tend to match with

more frequent observation when the number of parameter sets is limited. Hence, to repro-

duce the infrequent but largely negative return, it is necessary to increase the number of

states to enough levels where the statistical estimation can capture those rare observations.

However, the increase in the number of states quickly increases the number of parameters.
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Typically, each transition probability requires different parameters4.

Many researchers propose solutions to the CTP problem by introducing time-varying

transition probabilities (TVTP)5 but fail to address the lack of states simultaneously. Some

use exogenous macroeconomic variables, and some use observations for the input of the

TVTP function. However, these TVTP solutions typically focus on a small number of

states (e.g., two states) and still have difficulty extending to multiple states. Typical TVTP

solutions use a logistic function in each transition probability, which again requires an

increase in the parameter number if we extend to multiple states. Therefore, these TVTP

models may be able to produce a reasonable return distribution "on average," but they still

face a challenge to capture more granular volatility dynamics.

In order to solve the two drawbacks of the MS model, this paper extends the earlier work

of the Price Threshold Volatility forecasting model (PTV) developed by Kato (2021). The

earlier PTV model assumes three states in the economy (hence, this paper calls it PTV-3),

where each state has a different volatility level (the stable state, the middle state, and the

volatile state). Here, the initial point in the economy is the middle state. The model further

assumes that the economy enters a stable state if the asset price rises and crosses above a

certain price threshold. On the other hand, the economy enters a volatile state if the price

declines further below a certain threshold. Based on this premise, the PTV model quantifies

the probability of the price crossing these thresholds by measuring the distance between the

current price level and each threshold. Hence, the model transforms the threshold crossing

probability to the transition probability. The PTV-3 model shows improvement of volatility

forecast when the proposed TVTP model is compared with conventional models such as

the three-state CTP MS and GARCH(1,1) models. This paper aims to extend this PTV-3

model to a multi-state PTV model (PTV-M).

4For example, typical k-state CTP MS models requires k(k− 1) parameters to specify the transition prob-
ability matrix. Calvet and Fisher (2001), (2004), (2007) propose a multi-fractal approach to CTP MS
model to extend the number of states.

5See Engel and hakkio (1996), Gray (1996), Van Norden and Schaller (1997), Filardo (1998), Fong and See
(2002), Peria (2002), Yuan (2011), Bazzi et al. (2014), and Wang et al. (2019), for example.
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A nice feature of the PTV model is that it does not assume a logistic function to specify

each transition probability. Moreover, the specification of the price threshold to quantify

the TVTP in the PTV model allows a recursive structure. These characteristics of the PTV

model allow the extension to a multiple-state model quite easily. Unlike other MS models,

the proposed PTV-M model requires only one additional parameter to control the number

of states. This single additional parameter gives an econometrician the flexibility to change

from three states to an infinite number of states. The specification of the model is also

parsimonious and has a closed-form.

Also, there are economic rationales to use the price dynamics as the TVTP function in

the PTV model as follows:

1. The market microstructure literature shows that asset price contains rich information

about the economic condition6. Since the asset price reflects underlying and antic-

ipated economic conditions, it is reasonable to infer the latent states from the asset

price.

2. The asset price shows the so-called leverage effect, which shows a negative correla-

tion between the asset returns and the return volatility7. Therefore, the positive asset

return is often associated with the decrease in volatility, and the negative asset return

is often associated with the increase in volatility.

3. The price movement of the financial asset has a feedback effect on the real economy8.

The current price movement influences the future action of decision-makers of the

firms and financial market participants.

The remainder of the paper is organized as follows: Section 2.2 develops the extension

of the PTV-3 model. Section 2.3 presents an empirical analysis of the extended PTV-M

6See Wilson (1974), Milgrom (1979), Glosten and Milgrom (1985), Kyle (1985), Palfrey (1985), and Easley
and O’Hara (1987) (1991) (1992) for the examples.

7See Black (1976), Christie (1982), French et al. (1987) and a good review by Bekaert and Wu (2000).
8See Morck et al. (1990) and Bond et al. (2012).
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model and provides an in-sample comparison of simulated return distributions. Section

2.4 conducts out-of-sample analysis; point forecast, interval forecast, and density forecast.

Section 2.5 concludes.

2.2 Multi-States TVTP Model

2.2.1 Specification

This paper extends the PTV-3 model to the PTV-M model, which examines a case where

there is one asset and latent 2k+1 states of the economy at one point in time. This state of

economy varies over time and is described such that

St ≡ Si = {S−k,S−k+1, ...,S−1,S0,S1, ...,Sk−1,Sk} ∈ R2k+1
+

(2.1)

i ∈ {−k,−k+ 1, ...,−1,0,1, ...k− 1,k} is an indicator variable, S0 is the median state of

the economy, Sk is the most stable state, and S−k is the most volatile state. When St goes

toward Sk, the state becomes stabilized monotonically (the volatility in S1 is lower than

volatility in S0, S2 is lower than S1, and so on). On the other hand, when St goes toward

S−k the state becomes volatile monotonically (the volatility in S−1 is higher than volatility

in S0, S−2 is higher than S−1, and so on). The volatility of the asset price conditional on a

state St is characterized as

σ(St)≡ σi =

 σ̄ ×ai if i≥ 0

σ̄ ×bi if i < 0
(2.2)

where σ̄ ∈ R+ is a constant variable, and a ∈ (0,1) and b ∈ (0,1) are spacing parameters.

Since a and b are positive constant but less than one, σ−k > σ−k+1 > ... > σ−1 > σ̄ > σ1 >
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... > σk−1 > σk. If the spacing parameters a and b become close to one, the change from

σi to σi+1 becomes small, and if a and b become close to zero, the change from σi to σi+1

becomes large.

The one-period logarithmic total return of the asset rt ≡ ln(Pt/Pt−1) follows the process,

such that

rt+1(St) = µ− σ2(St)

2
+σ(St)εt+1 (2.3)

where µ is a positive constant, εt+1 is a random variable that follows IID standard Gaus-

sians N (0,1). Here, µ is a long-run mean of return because E[ert+1] = eµ .

At time t with the state st−1 = Si, the transition probability of the first-order Markov

chain is specified as

γi, j,t ≡ P(st = S j|st−1 = Si,st−2 = Sm, ...;I1:t−1)

= P(st = S j|st−1 = Si;I1:t−1)

(2.4)

where j ∈ {−k,−k + 1, ...,−1,0,1, ...,k− 1,k} is an indicator of next state S j, I1:t−1 is

cumulative information observed by econometrician from the past price sequence from

time t = 1 until t = t− 1. Then, the state dynamics of the MS model are defined by the

time-varying transition matrix such that
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At ≡



γk,k,t γk,k−1,t ... ... ... ... ... ... ... γk,−k+1,t γk,−k,t
γk−1,k,t γk−1,k−1,t ... ... ... ... ... ... ... γk−1,−k+1,t γk−1,−k,t

...
... . . . ...

...
...

... . . . ...
...

...
... . . . ...

...
γ0,k,t γ0,k−1,t ... ... γ0,−1,t γ0,0,t γ0,1,t ... ... γ0,−k+1,t γ0,−k,t

...
... . . . ...

...
...

... . . . ...
...

...
... . . . ...

...
γ−k+1,k,t γ−k+1,k−1,t ... ... ... ... ... ... ... γ−k+1,−k+1,t γ−k+1,−k,t
γ−k,k,t γ−k,k−1,t ... ... ... ... ... ... ... γ−k,−k+1,t γ−k,−k,t


(2.5)

The next sub-section describes the specification of this (2k+1)× (2k+1) matrix.

2.2.2 Price Dynamics

In the PTV model, the TVTP to a certain state is quantified as a probability of an asset price

crossing thresholds at a certain price level corresponding to the states. This probability is

measured by the distance between the current price and the price thresholds and the price

volatility with the assumption of normal distribution. Thinking about a building structure

is helpful to show this switching mechanism as follows.

Imagine we are in a building with k floors above the ground and k basements floors under

the ground. To clarify, this paper uses a European notation of counting the floor, such as

the ground floor (the level zero) for the first floor in the US. The ground floor is the median

floor of this building, and we start from here. If we would like to go up to the next floor,

we use stairs to cross the ceiling of the ground floor. After climbing up to the next floor,

we may stop there or may go up again to the second floor. On the other hand, we can go

down to the first basement or the second basement. If our feeling to decide to go upstairs

or downstairs is governed by a normal distribution, we are more likely to go up or down to

the adjacent floor than to go up or down a floor two floors away from the current floor at

one time. Also, if we tend to move longer distance in a unit of time, we are more likely to

go up to the next floor or go down to the basement.
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These ascending and descending stairs are analogous to the model setting. Consider an

exponentially weighted moving average (EWMA) as a median state of the economy, and

we start from here, which is the ground floor in the building analogy. An upper threshold

lies above this EWMA, and if we cross this upper threshold, we go to a stable state S1 (the

first floor). We may stop there or may cross another upper threshold again to go to a more

stable state S2 (the second floor) at once. On the other hand, if we cross the lower threshold

below the EWMA, we go to a volatile state S−1 (the first basement). We may go back

again to the median state S0 (the ground floor), or may go further to a more volatile state.

How often we may cross these thresholds is determined by the price volatility. The price

return has a normal distribution in the error term, and the crossing probability is quantified

in the same way to quantify an exercise probability of out-of-the-money European option

security (Black and Scholes, 1973). The higher the volatility is, the more likely the price

is to cross the threshold. Also, the price is more likely to cross the adjacent threshold than

the thresholds two states away from the current state.

Because the price volatility is vital to quantify the probability in this setting, a careful

treatment is required. As explained later, when we quantify the probability of crossing

multiple thresholds at one unit of time (for example, going to the second floor from the

ground floor without staying on the first floor), we need to adjust the volatility accordingly.

This is because the magnitude of volatility is different across the states by definition. For

example, the volatility of the stable state (the first floor) is lower than the volatility of the

middle state (the ground floor). Thus, if we measure the probability of going to a more

stable state (for example, the second state), the proposed model uses a weighted average of

volatility in these two states to quantify the probability, as explained later in this paper.

Switching Thresholds of Economic States

Given the asset price series {Pt}T
t=1, an observed exponentially weighted moving average

(EWMA) is defined with a specific parameter δ ∈ (0,1) as below.
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EWMAt ≡ δPt +(1−δ )EWMAt−1

EWMA1 ≡ P1

(2.6)

I introduce a price threshold Ki
j,t such that

Ki
j,t ≡ EWMAt−1×κ

i
j (2.7)

where κ i
j is a (constant) multiplier, which gives a distance of each threshold from EWMA

(ceilings and floors of each floor in the building analogy). Here again, i is an indicator of

the current state, and j is an indicator of the next state. (For example, if we are on the

second floor now, i = 2, and if we quantify the distance to the fourth floor, j = 4.) Note

that the Ki
j,t is determined at time t−19. For "climbing" the thresholds (going to upstairs,

which is j ≥ i), define this multiplier κ i
j = κ i

u, j as a function of spacing parameters a, and

b, with additional parameters ψu and ψl such that

κ i
u, j ≡

1+ψua j−1

1−ψlb j−1 κ i
u, j−1 if j > i+1

κ i
u, j ≡ 1+ψuai if j = i+1

κ i
u, j ≡ 1 if j = i

(2.8)

where ψu ∈ (0,1/δ −1) and ψl ∈ (0,1/δ −1) are constant. Note that this threshold mul-

tiplier is not time-varying. Similarly, define a multiplier κ i
j = κ i

l, j for "descending" the

thresholds (going to downstairs, which is j ≤ i), such that

9See Appendix A for why the price threshold of time t can be fixed at t−1.
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κ i
l, j ≡

1−ψlb j+1

1+ψua j+1 κ i
l, j+1 if j < i−1

κ i
l, j ≡ 1−ψlbi if j = i−1

κ i
l, j ≡ 1 if j = i

(2.9)

The threshold multiplier κ i
j = {κ i

u, j,κ
i
l, j} has a recursive structure. Since a, b, ψu, and ψl

are all positive constant, κ i
u, j+1 is always larger than κ i

u, j, and κ i
l, j+1 is always larger than

κ i
l, j for the same state i. When j− i increases, the upward distances from a state i becomes

larger (or downward distance becomes shorter), and when j− i decreases, the downward

distances from the state i become larger (or upward distance becomes shorter).

The spacing parameters a and b serve as an adjustment factor, which controls the band-

width of price thresholds. Due to this adjustment factor, the marginal distance between

each "upper" state (overground floors) diminishes when the price crosses a state which lies

above EWMA ( j > 0). For example, the distance between the second threshold and the

third threshold above the EWMA is shorter than the distance between the first threshold

and the second threshold. On the other hand, the marginal distance between each "lower"

state (underground floors) increases when the price crosses a state which lies below from

EWMA ( j < 0). For example, the distance between the second threshold and the third

threshold below from the EWMA is longer than the distance between the first threshold

and the second threshold. The reason is as follows.

Imagine if the marginal threshold distances were equal across different states. It would

be less probable to cross the threshold from the stable states because the price fluctuates

less, and the distance between the two thresholds becomes relatively longer. Also, it would

be more probable to cross from the volatile states because the price fluctuates more, and the

relative distance between the two thresholds becomes shorter. Therefore, if the bandwidth

is unconditionally constant regardless of the state, an asset price becomes very stable for a

long time once it enters a stable state because there is less switch from the stable state.
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Also, the volatility memory dies out very quickly because even though the asset price

enters a volatile state, it would immediately exit from the state thanks to heightened asset

fluctuation. However, as an asset price empirically shows long volatility memory (i,e,

volatile state lasts long once the economy enters the volatile state), the constant thresholds

distance is not coherent with the data. Therefore, there must be some adjustment on the

marginal distance conditional on the state. This adjustment increases switching probability

from a stable state and reduces switching probability from the volatile state.

Another characteristics of κ i
j is that the form is different for j > i and j < i. Imagine that

the price is now in the median state S0 and there is another price level, EMWA
′
t , above the

first upper threshold K0
1 , which satisfies EWMA

′
t ×κ1

0 = EWMAt ×κ0
1 . Then this EMWA

′
t

can be viewed as an imaginary EWMA if the economy were in the one-step upper state

S1, looking from S0. This condition means that there are two different states S0 and S1,

which share the same borderline as a lower threshold in perspective of EWMA
′
t and an

upper threshold in the perspective of EWMAt . This imaginary EWMA can be written by

EMWA
′
t = EWMAt×κ0

1/κ1
0 = EWMAt(1+ψu)/(1−ψlb). Then, by using this imaginary

EWMA, the upper threshold to switch to the the more stable state (S2) from the median state

(S0) in one unit of time can be expressed as K0
2 = EMWA

′
t×κ1

2 = EWMAt{(1+ψu)/(1−

ψlb)}× (1+ψua) = EWMAt{(1+ψua)/(1−ψlb)}× κ0
1 . This discussion is applied to

higher j recursively. Hence, κ i
u, j is defined as equation (2.8). The same argument is applied

for κ i
l, j, and therefore it is defined as equation (2.9).

In summary, the price thresholds are described as a matrix as below.
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Kt ≡



EWMA Kk
k−1,t ... ... ... ... ... ... ... Kk

−k+1,t Kk
−k,t

Kk−1
k,t EWMA ... ... ... ... ... ... ... Kk−1

−k+1,t Kk−1
−k,t

...
... . . . ...

...
...

... . . . ...
...

...
... . . . ...

...
K0

k,t K0
k−1,t ... ... K0

1,t EWMA K0
−1,t ... ... K0

−k+1,t K0
−k,t

...
... . . . ...

...
...

... . . . ...
...

...
... . . . ...

...
K−k+1

k,t K−k+1
k−1,t ... ... ... ... ... ... ... EWMA K−k+1

−k,t

K−k
k,t K−k

k−1,t ... ... ... ... ... ... ... K−k
−k+1,t EWMA



(2.10)

Using this price threshold, each state in the economy is defined as

St ≡



Sk if Kk,t < Pt

Sk−1 if Kk−1,t < Pt < Kk,t

...

S1 if K1,t < Pt < K2,t

S0 if K−1,t < Pt < K1,t

S−1 if K−2,t < Pt < K−1,t

...

S−k+1 if K−k,t < Pt < K−k+1,t

S−k if Pt < K−k,t

(2.11)

Therefore, from equation (2.4), the transition probabilities can be restated as
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γi,k,t = P[Sk|Si] = P[Ki
k,t < Pt |St−1 = Si;EWMAt−1] if i 6= j, j = k

γi, j,t = P[S j|Si] = P[Ki
j,t < Pt < Ki

j+1,t |St−1 = Si;EWMAt−1] if i 6= j, 0 < j < k

γi,0,t = P[S0|Si] = P[Ki
−1,t < Pt < Ki

1,t |St−1 = Si;EWMAt−1] if i 6= j, j = 0

γi, j,t = P[S j|Si] = P[Ki
j−1,t < Pt < Ki

j,t |St−1 = Si;EWMAt−1] if i 6= j, −k < j < 0

γi,−k,t = P[S−k|Si] = P[Pt < Ki
−k,t |St−1 = Si;EWMAt−1] if i 6= j, j =−k

γi,i,t = P[Si|Si] = 1−
k

∑
m=−k,m6=i

γi,m,t if i = j

(2.12)

As described in the following subsection, quantification of the probability in the specifi-

cation above is analogous to an exercise probability of out-of-the-money European option

security (Black and Scholes, 1973) conditional on the latent states.

Transition Probabilities

Now, let’s quantify the state probability of time t at time t − 1 in equation (2.12). From

equation (2.3), at time t−1, the next period’s price Pt being higher than the upper threshold

level Ki
j,t , conditional on the state St−1 = Si, where i ∈ {−k, ...,−1,0,1, ...,k}, is written as

Pt > Ki
j,t ⇔ lnPt > lnKi

j,t

⇔ lnPt−1 +µ− σ2(Si)

2
+σ(Si)εt+1 > lnKi

j,t

⇔−εt+1 <
ln
(

Pt−1
Ki

j,t

)
+µ− σ2(Si)

2

σ(Si)

(2.13)

Since ε follows IID standard Gaussian, the above quantity follows the same. Thus, if we

transform the price threshold Ki
j,t by the volatility σ(Si), it follows IID Gaussian, and we

can quantify the probability.
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However, this volatility must be adjusted when the asset price goes across multiple

thresholds in one unit of time, such that

hi
j ≡ σi if j = i+1 or j = i−1

hi
j ≡

κ i
j−1−1

κ i
j−1

hi
j−1 +

κ i
j−κ i

j−1

κ i
j−1

σ j−1 if j > i+1

hi
j ≡

1−κ i
j+1

1−κ i
j

hi
j+1 +

κ i
j+1−κ i

j

1−κ i
j

σ j−1 if j < i−1

(2.14)

hi
j is a weighted average of the volatility in the state j, and the weighted average of volatility

from median state to the state j−1 (when ascending, j > i+1), or until the state j+1 (when

descending, j < i+1).

Imagine that we are at the median state (the ground floor). If we go up to the second

upper state (the second floor) in one unit of time, we first go up to the first upper state

and then climb up to the second upper state. We know that, as soon as we reach the first

upper state, we calm down a little bit and become a little bit less likely to move around

than we were at the ground floor (volatility becomes more stable in the first upper state).

Therefore, when we aim to go to the second floor from the ground floor at once, we need

to take into account this expected change in the behavior at the first upper state. If we

want to measure the probability of crossing the second upper threshold from the median

state, we cannot apply the single volatility of median state (σ0) all the way up to the second

upper threshold. σ0 is only applicable up to the first upper threshold, and from there, the

new volatility σ1 must be applied. Thus, the adjusted volatility is a weighted average of

volatilities with distances between each threshold.

The marginal distance between the EWMA and the first upper threshold, and between the

first upper threshold and the second upper threshold are governed by threshold multiplier

κ i
j, as shown in equation (2.8) and (2.9). For example, the adjusted volatility from EWMA

to the second upper threshold is determined by (K0
2,t−EWMAt)h0

2 = (K0
1,t−EWMAt)h0

1+
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(K0
2,t − K0

1,t)σ1 ⇔ h0
2 = {(K0

1,t − EWMAt)/(K0
2,t − EWMAt)}h0

1 + {(K0
2,t − K0

1,t)/(K
0
2,t −

EWMAt)}σ1. Each term of the right hand side of this equation contains EWMA and can-

cels out between numerator and denominator, we get equation (2.14).

Alike Black and Scholes (1973), define di
j,t using this adjusted volatility hi

j such that

di
j,t ≡

ln
(

Pt−1
Ki

j,t

)
+µ− 1

2(h
i
j)

2

hi
j

(2.15)

then di
j,t follows IID standard Gaussian N (0,1). Thus, from equation (2.12) and (2.15),

the probability of the asset price crossing above the uppermost threshold j = k, conditional

on the state i is

γi,k,t = P[Pt > Ki
k,t |St−1 = Si] = Φ(di

k,t) (2.16)

where Φ is Gaussian cumulative distribution function. Note that the transition probabilities

of crossing the upper threshold of time t, at time t = t − 1, are fully quantified with the

information available at time t = t−1 (because the threshold Ki
j,t is determined at the time

t−1).

Similarly, to quantify the probability of price being lower than the lowermost threshold

j =−k, di
j,t leads to the transition probabilities of crossing the lowermost threshold at time

t, conditional on the state i at time t = t−1, which can be written from equation (2.12) and

(2.15) as

γi,−k,t = P[Pt < Ki
−k,t |St−1 = Si] = 1−Φ(di

−k,t) (2.17)

Finally, from equations (2.12) and (2.15), the transition probabilities for the intermediate
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state conditions (i 6= j, j 6= k and j 6=−k) are

γi j,t = P[Ki
j,t < Pt < Ki

j+1,t |St−1 = Si] = Φ(di
j,t)−Φ(di

j+1,t) if j > 0

γi0,t = P[Ki
−1,t < Pt < Ki

1,t |St−1 = Si] = Φ(di
−1,t)−Φ(di

1,t) if j = 0

γi j,t = P[Ki
j−1,t < Pt < Ki

j,t |St−1 = Si] = Φ(di
j−1,t)−Φ(di

j,t) if j < 0

(2.18)

Each transition probability at time t, γi j,t , is fully characterized by the observations at time

t − 1 with the Gaussian cumulative distribution function. When the price gets close to

a threshold, the transition probability becomes high. When the price gets far from the

threshold, the transition probability becomes low. This price threshold model has a closed-

form likelihood, and the maximum likelihood estimation can apply to the parameters.

To summarize the above discussion, the PTV-M model requires eight parameters as fol-

lows.

θ = (σ̄ a b ψu ψl δ µ k) ∈ R8
+

(2.19)

where σ̄ is volatility in the median state, a, b are spacing parameters for price thresholds,

ψu and ψl are price threshold parameters, δ is an exponential moving average parameter, µ

is the long-term mean of the asset returns, and k is the adjustment parameter for the number

of states. Note that the extension of PTV-3 model to multiple states (PTV-M) only requires

one additional parameter k, and using two spacing parameters, a and b, instead of volatility

in each state. This model is fully flexible as it can accept any natural number of k.
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2.3 Empirical Analysis

2.3.1 Maximum Likelihood Estimation

Now I estimate the model parameters by a historical dataset. The conditional probability

density function with 2k+1 states is

ωt = ( f (rt |st = Sk,r1:t−1;θ) ... f (rt |st = S0,r1:t−1;θ) ... f (rt |st = S−k,r1:t−1;θ))
′ (2.20)

where f (rt |st = S j,r1:t−1;θ) is

f (rt |st = S j;r1:t−1;θ) =
1√

2πσ2(S j)
exp

[
−
{rt−µ +σ2(S j)/2}2

2σ2(S j)

]
(2.21)

The filtered probabilities of the latent states conditional on the observed returns satisfy10

Π̂t =
ωt ∗ (Π̂t−1At)

[ωt ∗ (Π̂t−1At)]ι
(2.22)

where ∗ denotes element-by-element multiplication and ι = (1 ... 1)′ ∈ R2k+1. Then the

likelihood function is written as11

lnL(θ ;r1:T ) =
T

∑
t=1

ln[ωt · (Π̂t−1At)] (2.23)

Then, the maximum likelihood estimator is defined by

10See Appendix B for the proof.
11See Appendix B for the proof.
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θ̂ML = argmax
θ

{lnL(θ ;r1:T )} (2.24)

Since the objective function of equation (2.24) is non-linear in general, it is difficult to

solve analytically. Therefore, the optimization is conducted numerically in practice.

2.3.2 Sample Data

This paper retrieves the return data from Prof. Kenneth French’s website for the empirical

analysis12. This data contains the daily excess return on the value-weighted US equity in-

dex calculated by the Center for Research in Security Prices (CRSP) over July 1st, 1926

to December 31st, 2020, which has T = 24,896 observations. Over this period, the ex-

cess return series has a historical mean of 0.030302% per day (about 7% per year). The

Augmented Dickey-Fuller (ADF) test (1996) brings no evidence of non-stationarity in the

return data13. Using excess return has merit compared to using raw stock return for the

long time horizon analysis because it is not affected by the interest regime change in the

US in 1951 (Treasury-Federal Reserve Accord). I construct the price level of the US equity

at time t from the excess return by Pt ≡∏
t
k=0(1+Rk), where Rt is observed excess return

at time t.

2.3.3 Model Parameter Estimation

For optimizing equation (2.24), the historical mean is derived from the sample data as

µ̂ = 0.030302% and is used as a calibrated value for µ14.

12https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
13The p-value of ADF test is less than 0.01 for 0 to 20 lags.
14The reason for the calibration is because the conditional expectation of the return is µ (∵ E[er̃t ] = eµ ), and

it is preferable that the estimated model to be consistent with reasonable values for the long-run mean.
Also, optimization constraints are set to parameters such that σ̄ ∈ (0.001,0.100), a ∈ (0.001,0.999), b ∈
(0.001,0.999), ψu ∈ (0.001,0.100), ψl ∈ (0.001,0.100), and δ ∈ (0,1). These constraints are required
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For the empirical analysis, I conduct MLE with various k ∈ {1,2, ...,10}. To proceed

with the optimization process, first, I estimated parameters for the k = 1 model with some

robustness check15. Then, I used the MLE estimators of k = 1 as an initial value for the

estimation of k = 2. The same principle applies to all the subsequent ks (for example, the

MLE estimators of k = 2 for the initial value to estimate k = 3, the MLE estimators of k = 3

for the initial value to estimate k = 4, and so on).

Table 7 summarizes the maximum likelihood estimation results of the PTV-M model by

increasing k from 1 to 10 over the whole sample. I use the k = 1 model as a benchmark

model for the in-sample and out-of-sample comparison in later sections. From the table,

the likelihood, lnL, rises as k increases monotonically up to k = 8 and then stabilizes at that

point. ˆ̄σ is almost stable at about one percent, but gradually and monotonically decreases

when k increases. This is because the asset price exhibits negative skewness in its return

distribution. When k increases, the model matches a larger magnitude on the downside

volatility than the upside volatility. But, the model needs to counterweight both sides of

volatility to match with historical volatility because the model assumes the symmetric num-

ber of states on the upper side and the lower side (k states on the upper side and k states on

the lower side). Therefore, it needs to reposition the median state volatility σ̄ on the more

stable side of the economy (upper side).

The estimates, â and b̂ increase monotonically and approach to one when k increases.

From equations (2.2), (2.8) and (2.9), a and b are spacing parameters, and if a and b ap-

proach zero, the bandwidth between one threshold to the next threshold widens. Contrary,

when a and b approach one, the bandwidth of thresholds narrows. Hence, it does make

sense that these spacing parameters approach one, because, as it is like cutting a cake to

to make sure that the Hessian matrix is invertible during the optimization. Because the optimization is
done in a numerical fashion, actual optimization was done by scaling a, b, and δ by 1/10 to make all
the parameters’ size in the same order to ease numerical search. Therefore, the optimization method in
Byrd et al. (1995) is preferable. This optimization method incorporates box constraints (an upper bound
and a lower bound) to a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method. See Broyden
(1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970).

15See Appendix F for the robustness check.
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more slices and each slice becomes thinner, increasing state number k narrows distances

of each threshold. Also, b̂ is smaller than â in general. From equations (2.2), this a > b

implies an asymmetry in the volatility states that the downside volatility (mainly governed

by b) is disproportionally higher than the upside volatility (mainly governed by a).

The cake analogy can be applied to parameters ψ̂u and ψ̂l , which also controls band-

widths of thresholds. These parameters decrease almost monotonically as k increases. This

decrease is also because cutting the economy by multiple states makes each bandwidth

thinner. Lastly, δ̂ hovers between 0.60 and 0.64, but no clear relationship with k is ob-

served.

2.3.4 Model Selection

I calculate Vuong statistics (1989) to see whether there is a statistically significant differ-

ence among the likelihood produced by each k model. If we consider two densities f and

g, the Vuong statistics is written such that,

T−1/2LRT =
1√
T
(lnL f

T − lnLg
T ) =

1√
T

T

∑
t=1

ln
f (rt |r1, ...,rt−1)

g(rt |r1, ...,rt−1)
(2.25)

where LRT is the likelihood ratio of lnL f
T and lnLg

T , L f
T is the likelihood function of den-

sity f with T samples, and Lg
T is the likelihood function of density g with T samples. I

compare the density of the k 6= 10 models with the k = 10 model, hence the null hypothesis

is H0 : Lk
T = L10

T where k 6= 10. When the return observation {rt} is IID, Vuong (1989)

shows that the likelihood ratio LRT is asymptotically normal under the null, and the vari-

ance of this likelihood ratio is consistently estimated by the sample variance of the addends

ln[ f (rt |r1, ...,rt−1)/g(rt |r1, ...,rt−1)]. However, since the financial return series is typically

not IID (for example, the return is affected by the latent states), I construct a heteroskedas-

ticity and autocorrelation consistent (HAC) version of the Vuong test by following Calvet
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and Fisher (2004)16.

Table 9 shows the result of the Vuong test. Panel A shows the t-statistics and p-values

for the full sample, and Panel B shows HAC adjusted version. Panel C and Panel D corre-

sponds to the same test as Panel A and Panel B rspectively, but for the half sample. Table

9 shows that the p-value increases when the k approaches 10. For the full sample, with

the negative Vuong statistics, the k = 10 model significantly outperforms the model with

k ∈ {1,2,3} and the model with k = 4 at a 2% significance level. From k = 5, the signif-

icance level decreases monotonically as k approaches 10 and hits bottom (largest p-value)

at k = 8. This tendency is the same for the half sample, where the model with k = 10

significantly outperforms the models up to k = 2 and k = 3 with 3% significance. From

k = 4, the significance level reduces monotonically until k = 8. From these observations, I

conclude that the increase of k up to k = 8 improves the model, but from k = 9, the model

improvement is limited even if we increase k.

2.3.5 Return Simulation

Next, I see whether increasing the number of state k improves the generation of a return

distribution closer to the empirical data. I use the estimators in Table 7 to generate simu-

lated return series from each k. Figure 5 and 6 show the observed logarithmic return series

from the data, {rt}T
t=1 ("(a) Observed Time Series"), and the simulated logarithmic return

series, {r̃t}T
t=1, by each k (figures from (b) to (f)). All the graphs have exactly the same

scale for the x-axis and y-axis. From Figure 5 (a) and Figure 6 (a), the observed return

series exhibits volatility clustering. Also, the observed return distribution shows negative

skewness with infrequent long tails. Figure 5 and Figure 6 show that an increase of k can

help generate nice characteristics of infrequent spike and clear volatility clusterings like

the real returns. When the number of the state is low (for example, k = 1), the model can

not produce a large spike as the real-world experience. However, as k increases, the model

16See Appendix C for Newey-West heteroskedasticity and autocorrelation consistent standard errors.
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becomes able to produce large but infrequent spikes as the observed return series while

maintaining a relatively stable period. Also, as k increases, the model becomes capable

of producing more visible volatility clustering compared to the k = 1 model. Observing

simulated return distributions, increasing k improves the generation of return distributions.

2.4 Out-of-sample Comparison with Various k Models

2.4.1 Parameter Estimation

I now compare the out-of-sample performance by varying k. First, I do the maximum like-

lihood estimation of each model’s parameters using only the first half of observations. The

way MLE estimation was performed was exactly the same as the full sample estimation. I

did robustness checks for the k = 1 parameters17 and use the result for subsequent model

k = 2. I perform this until k = 10. Table 8 shows the maximum likelihood estimators of the

parameters over the first half of the sample data18. Again, when the number of state k in-

creases, the log-likelihood increases monotonically up to k = 8, and it plateaus from there.

The parameter variations by k are also consistent with the result in the full sample, where

ˆ̄σ , ψ̂u, ψ̂u decreases monotonically, and â and b̂ increase monotonically by increasing k. δ̂

is stable over k.

2.4.2 Point Forecasts

In this subsection, I compare how well each model performs a point forecast of volatil-

ity over a different forecasting horizon, by Mincer-Zarnowitz regressions (Mincer and

Zarnowitz, 1969) over one business day, five business day (one week), ten business day

(two weeks), twenty business day (one month), forty business day (two months), and sixty

17See Appendix F.
18Again, I calibrated the mean for the optimization with the mean of returns over the first half sample (µ̂ =

0.031391%) for all the models. The first half of the sample contains 12,448 observations.
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business day (one quarter) horizons. Mincer-Zarnowitz regression can be written as

σ
2
t,n = γ0 + γ1Et−nσ

2
t,n + εt (2.26)

where σ2
t,n is a variance over n days from time t − n and εt is white noise. When the

model is correctly specified, the model produces perfect variance forecasts. Thus, the null

hypothesis of the unbiased forecast implies H0 : γ0 = 0∩ γ1 = 1. I translate equation (2.26)

to my out-of-sample analysis, such that

RVt,n = γ0 + γ1Et−nRVt,n +ut (2.27)

where RVt,n = ∑
t
s=t−n+1 r2

s . RVt,n is realized volatility over n day period from t− n, with

Et−nRVt,n = B−1
∑

B
k=1 R̂V t,n,k. R̂V t,n,k is the forecast of realized volatility over n day pe-

riod at the t − n point of time from the model, and ut is white noise (E[ut ] = 0). The

multiple-period forecast is path-dependent and requires keeping the error term in the return

specification (equation (2.3)) for the forecast. Hence, the single-path variance forecast is

noisy. Therefore, I generate B = 10,000 paths of forecast at each point of time (t−n) for

each forecast horizon (n = {1, 5, 10, 20, 40, 60 } days). Then, I take the average of the

B paths of the forecast at each point of time to get the less noisy version of the realized

volatility forecast Et−nRVt,n.

If the model concerned is correctly specified, the coefficients of Mincer-Zarnowitz will

be γ0 = 0 and γ1 = 1. Table 10 shows the result of Mincer-Zarnowitz evaluation of realized

volatility point forecast. I use the latter half of the subsample to evaluate the performance of

forecasting the realized volatility RVt,n for the dependent variable in equation (2.27). In this

subsample, there are T ′= 12,448 observations. The table shows the coefficients of Mincer-

Zarnowitz regression and R2. The figures in the parentheses are the standard error with
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Heteroskedasticity and Autocorrelation Consistent (HAC) adjustment using the method of

Newey and West (1987), with automatic lag parameter selection (West and Newey, 1994)

as described in Appendix C.

Since only looking at the coefficient of Mincer-Zarnowitz is not fully informative and

can be misleading, we must check its graphical representation. Figures 7 to Figure 12 show

the result of Mincer-Zarnowitz regression. Figure 7 shows Mincer-Zarnowitz regression of

one-day out-of-sample forecast, Figure 8 shows five-day forecast, Figure 9 shows ten-day

forecast, Figure 10 shows twenty-day forecast, Figure 11 shows forty-day forecast, and

Figure 12 shows sixty-day forecast for each k = {1,2, ...,10}. Each panel starts with k = 1

from the top left, k = 2 on the top right, to k = 10 to the bottom right. Each graph has

realized volatility forecast from the model on the x-axis, and the real realized volatility

observation corresponding to that forecast is on the y-axis. The scale of the x-axis and

y-axis are the same within the panel. The blue diagonal line is the regression line.

As shown in the graphs, the model with lower k is only capable of producing up to a cer-

tain level of volatility (e.g., k = 1 on the top left, and k = 2 on the right next, which creates

a vertical "wall" of dot points), but gradually become able to produce higher volatility as k

increases (as we go toward the right one by one in the panel). This ability to produce higher

volatility is clearly an improvement. Even with a low number of states with limited volatil-

ity, the slope of the regression line can be close to one, but not in granularity (like one-day

forecast by k = 1 model in Figure 7). In such a case, the standard error is significant, and

the explanatory power (R2) is low (e.g., 0.084). If the model can produce higher volatility,

it improves the R2 of the regression.

Table 10 shows that the increase of k states improves out-of-sample point forecasts. The

one-day forecast tends to be good for any k in terms of slope coefficient γ1. However, when

k is small, the model does not perform well on longer horizons. Increasing k contributes to

a significant improvement on forecasting long horizons while forecasting equally well on

the short horizons. From k = 6 to k = 8, the model performs equally well on short and long
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horizons. The model with k = 9 and k = 10 look good on the long horizon forecast, but

start to deviate on short horizon. However, the table shows that the HAC-adjusted standard

errors decrease almost monotonically when k increases. This monotonic improvement is

similar for the intercept of the regression coefficient γ0. Though the intercept is almost zero

for the k = 1 model for all the horizons, if we look carefully, the increase in k still improves.

In terms of R2, it improves gradually up to k = {6,7,8} and stabilizes. This tendency of

stabilizing at k = 8 is consistent with the MLE result and the Vuong test, where k = 8 yields

the highest log-likelihood. The R2 of the k = 8 model is almost double of R2 of the k = 1

model for the shorter horizons and about 1.5 times better for longer horizons. Overall, an

increase of k states improves forecasting performance.

2.4.3 Interval Forecasts

I evaluate the return distribution with the Value-at-Risk metric (VaR). The VaR at time t

is defined to be the pth quantile (p ∈ [0,1]) of the conditional return distribution over the

period from time t +1 to t +n as

ˆVaRt,n(p)≡ F̂t,n(p) (2.28)

where F̂t,n is conditional return forecast distribution generated by the model. The accuracy

of the VaR, or unconditional coverage property, is verified by recording the number of "hit"

rates19. The "hit" function flags one when the observed return rt exceeds the predicted

ˆVaRt,n(p). The failure rate is the number of times where the "hit" function flags over the

given sample period. Denoting the observed cumulative return over n days from time t as

rt,t+n = ∑
n
k=t rk, the indicator ("hit") function which flags the breach of the VaR is defined

as

19Kupiec (1995), Christoffersen (1998)
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It+n(p)≡

 1 if rt,t+n < ˆVaRt,n(p)

0 if rt,t+n ≥ ˆVaRt,n(p)
(2.29)

Then the "failure" rate is written as

Ûn(p)≡ 1
T ′

T ′−n

∑
t=1

It+n(p) (2.30)

If the VaR is accurately estimated, the failure rate converges to p; Ûn(p)→ p. To ob-

tain each model’s conditional forecast distribution F̂t,n, at each time t, I simulate r̃t,t+n for

B = 10,000 paths {r̃t,t+n}B
b=1. Then, I simply take the pth quantile of {r̃t,t+n}B

b=1 at each

time t, to assign it to ˆVaRt,n(p) and obtain {It+n(p)}T ′
t=1. From the construction of the hit

function, the time series {It+n(p)}T ′
t=1 is highly likely to have autocorrelation. Thus, I use

Newey-West Heteroskedasticity and Autocorrelation Consistent standard errors by Newey

and West (1987) for the failure rate forecast20.

Table 11, to Table 16 report the failure rate of the model with each k for n = {1, 5, 10,

20, 40, 60 } day forecasts and confidence level at lower tail and upper tail of p = { 1%, 5%,

10%, 90%, 95%, 99% }. The p-value is evaluated against a null hypothesis H0 : Ûn(p) = p.

If the p-value is larger, it is less probable to reject that the forecasted VaR level is indeed

at the realized quantile from the observed returns. Therefore, larger p-values imply better

forecasts. In these tables, the boldface numbers are statistically indifferent from the target

value-at-risk level p at the 3% confidence level.

Table 11 and Table 12 show the improvement by the increase of k is mild for the short

horizon. However, looking at it carefully, the failure rate on the middle interval (e.g., ten

percentile or ninety percentile) becomes closer to the target percentile when k increases.

20Described in Appendix C
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For forecasting five-day horizon, an increase of k improves forecasting the right tail (ninety-

nine percentile) because the p-value is increasing. This improvement is particularly true for

forecasts on more than a twenty-day horizon from Table 14 to Table 16. The p-value gets

higher both on the left tail and the right tail for the longer horizons when k increases (except

for the ninety-nine percentile of the sixty-day horizon forecast). This means, especially

for longer horizons such as more than twenty-day forecast, the increasing k improves the

model’s ability to produce return distribution similar to real distribution, while maintaining

a similar, or slightly higher accuracy on the shorter horizons.

2.4.4 Density Forecasts

I evaluate density forecasts by each model with the Probability Integral Transform (Diebold,

et al. 1998). The probability integral transform of a sequence of generated forecasts by a

model { ft(rt,n|Ωt)}T ′
t=1 is a cumulative density function corresponding to the density ft(rt,n)

evaluated at r such that

F̂t,n(r)≡ Pt(rt,n ≤ r|Ωt) =
∫ r

−∞

ft(y)dy (2.31)

If the forecast generating model is specified correctly, the random variables Ut,n = Ft,n(yt,n)

follow an uniform distribution on the interval of [0,1]. Thus, if the probability integral

transform is closer to a uniform distribution, it can be said that the forecast is more accurate.

This is an extension of the evaluation of interval forecasting, which checks every interval of

the distribution. Following Diebold et al. (1998), I look at the graphical plot of Ut,n to see

how close the probability integral transform of the forecasts is to the uniform distribution.

Figure 13, 14 and 15 show the probability integral transform of forecasts generated by

corresponding models. Figure 13 shows the result for the short horizon (Panel A: one day

forecast and Panel B: five-day forecast), Figure 14 illustrates the middle horizon (Panel
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A: ten-day forecast and Panel B: twenty-day forecast) and Figure 15 illustrates the long

horizon (Panel A: forty-day forecast and Panel B: sixty-day forecast). Each panel contains

ten forecasts beginning with k = 1 at the top left toward k = 10 on the bottom right. The

horizontal axis corresponds to percentile from zero to one, and the vertical axis corresponds

to the frequency for each percentile bucket. Figure 13, 14, and 15 have a hundred buckets

for each graph. The red horizontal lines in each chart indicate the uniform distribution, and

the blue lines are 5% distant from the uniform distribution line.

Overall, the probability integral transform of forecasts improves by an increase in k. The

probability integral transform tends to have a butterfly shape, such that there are peaks of

frequency at the left tail and at ninety percentile, and valleys of frequency at the middle

range and right tail (ninety-nine percentile). These peaks gradually become lower, and

valleys gradually become higher toward the uniform distribution line (red line) when k

increases. The convergence to the uniform distribution is especially seen on the right tail

(ninety-nine percentile). The graphical result here is consistent with the result of interval

forecasts seen in Table 11, to 16, where VaR forecasts tend to be good at the left and right

tails, and the forecasting ability improves by k.

The Cramer von-Mise (CVM) statistics in Table 17 also confirm this graphical interpre-

tation. As in Appendix D, the CVM criterion measures the distances between two given

distributions. Hence the smaller the CVM is, the closer the distance between the proba-

bility integral transform and the uniform distribution, and the better the forecast is. Table

17 shows that when k increases, the CVM statistics (the distance) get smaller overall. The

CVM criterion improves for the forecast horizons from one day to twenty days when k be-

comes larger. Each model performs almost equally well for the forty-day horizon. On the

other hand, the CVM criterion gradually increases for the sixty-day horizon. However, the

value for the sixty-day horizon is still low compared to other forecasting horizons except

for the one-day horizon, even for the higher k. Considering the short and medium improve-

ments, the slight underperformance on the sixty-day horizon is acceptable. Together with

60



the graphical result in Figure 13, Figure 14, and Figure 15, the smaller CVM values in Ta-

ble 17 indicate that the distribution of the out-of-sample density forecast by the proposed

model outperforms other models.

2.5 Conclusion

This paper proposes an extension of the PTV-3 model to consider a higher number of dif-

ferent states. In this extended PTV-M model, the price threshold has an excellent recursive

structure, easy to expand to multiple states. This extension in the number of states in the

PTV model overcomes the weakness of the MS model, which cannot easily produce vari-

ous return distribution groups contemporaneously. The model is parsimonious and flexible

in accepting any number of states by changing parameter k. This feature is convenient

because typical MS requires an exponentially expanding number of parameters when in-

creasing the number of states. From the empirical analysis, the model with higher k can

better predict the return distribution of the US equity index. I compare the out-of-sample

point forecast, the out-of-sample interval forecast, and the out-of-sample density forecast

of the models with k = {1,2, ...,10} and find that the model with higher k predicts more

accurate predictions than lower k.

This model’s practical application would be to use it as an indicator of dynamic asset

allocation based on the filtered regime of the capital market and as a more accurate quantile-

based risk management monitoring. One interesting work could be applying this PTV-M

model to different asset classes, such as fixed incomes or commodities. Another direction is

to study the implications of endogenous transition probabilities for the appearance of long

memory in volatility. The realized asset return volatility is well known to have long memory

(Andersen et al. 2003), but the origin of this long memory is not yet well-understood. On

the other hand, the long memory is well known to be closely related to Markov Switching

(Diebold and Inoue, 2001), in the classic CTP case. It will be interesting to explore the
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further implication of the relation between the long memory and Markov Switching in the

TVTP setting.
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A. Proofs of equations in Section 1.2.3 and 2.2.2

Assumption 1. The price threshold K at time t is characterized by the exponential weighted

moving average, EWMA at time t, with a positive constant c ∈ R+, such that

Kt = c×EWMAt

Proposition 1. If Assumption 1 holds, the price threshold K at time t is characterized by

the exponential weighted moving average, EWMA at time t − 1, with a constant c′ ∈ R,

such that

Kt = c′×EWMAt−1

Proof. An asset price at time t goes beyond this price threshold is written as

Pt > Kt = c×EWMAt

= c{δPt +(1−δ )EWMAt−1}

= cδPt + c(1−δ )EWMAt−1

⇔ Pt >
c(1−δ )

1− cδ
EWMAt−1

Therefore, defining as followings, Kt is characterized by the exponential weighted moving

average at time t−1.

c′ ≡ c(1−δ )

1− cδ

When c∈ (0,1/δ ), c′ becomes also a positive constant. The same discussion is also applied

when an asset price at time t goes below the price threshold (Pt < Kt).
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B. Proofs of equations in Section 1.3.1 and 2.3.1

Proposition 2. The filtered probabilities of the N latent states at time t, conditional on the

observed returns satisfies

Π̂t =
ωt ∗ (Π̂t−1At)

[ωt ∗ (Π̂t−1At)]ι
∈ RN

where ∗ denotes element-by-element multiplication and ι = (1 ... 1)
′ ∈ RN

Proof. From Bayes’ formula

Π̂
j
t = P(st = S j|rt ,r1:t−1;I1:t−1)

=
f (rt |st = S j,r1:t−1;I1:t−1)P(st = S j|r1:t−1;I1:t−1)

f (rt |r1:t−1;I1:t−1)

=
ω j,tP(st = S j|r1:t−1;I1:t−1)

f (rt |r1:t−1;I1:t−1)

Because, the transition probability is a Markov chain, such that

P(st = S j|st−1 = Si,r1:t−1;I1:t−1) = P(st = S j|st−1 = Si;I1:t−1)

Hence,

P(st = S j|r1:t−1;I1:t−1)

=
N

∑
i=1

P(st = S j|st−1 = Si,r1:t−1;I1:t−1)P(st−1 = Si|r1:t−1;I1:t−1)

=
N

∑
i=1

P(st = S j|st−1 = Si;I1:t−1)P(st−1 = Si|r1:t−1;I1:t−1)

=
N

∑
i=1

γi j,tΠ̂
i
t−1

= (Π̂t−1At) j

Also, since Π̂tι = ι

f (rt |r1:t−1;I1:t−1) = [ωt ∗ (Π̂t−1At)]ι
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Therefore

Π̂
j
t =

ω j,t(Π̂t−1At) j

[ωt ∗ (Π̂t−1At)]ι

Proposition 3. The analytical expression for the likelihood function of the filtered proba-

bilities of the latent states is

lnL(θ ;r1:T ) =
T

∑
t=1

ln[ωt · (Π̂t−1At)]

Proof.

lnL(θ ;r1:T ) =
T

∑
t=1

ln f (rt |r1:t−1)

=
T

∑
t=1

ln[ωt ∗ (Π̂t−1At)]ι

=
T

∑
t=1

ln
N

∑
j=1

[ω j,t ∗ (Π̂t−1At) j]

=
T

∑
t=1

ln[ωt · (Π̂t−1At)]

C. Newey-West Heteroskedasticity and

Autocorrelation Consistent Standard Errors

The Newey-West Heteroskedasticity and Autocorrelation Consistent covariance matrix Ω̂n

(Newey and West, 1987) is described as

Ω̂n = Γ̂0,n +
q

∑
v=1

w(v,q){Γ̂v,n + Γ̂
′
v,n}
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where Γ̂v is a sample autocovariance and w(v,q) = 1−{v/(q+ 1)} is a Bartlett kernel,

which makes Ω̂n positive semi-definite. q is a truncation parameter, which can be automat-

ically chosen by West and Newey’s method (1994) such that

q = 1.447 ·
[ w′Ŝw

w′Ŝ0w
T
] 1

3

where w is g×1 weighting vector w = (0 1 1 ... 1)
′
, g is number of estimators to test, and

Ŝ = ∑
l
j=−l | j|kΓ̂ j where k = {0,1}, and l = 4(T/100)2/9.

For the Mincer-Zarnowitz regression, Γ̂v is written as such that

Γ̂v,n =
1
T

T

∑
t=v+1

{
RVt,n−

1
T ′

T

∑
t=T−T ′

RVt,n

}
ût û

′
t−v

{
RVt−v,n−

1
T ′

T

∑
t=T−T ′

RVt,n

}′

Then the Wald test statistic, which follows X 2 distribution with g degrees of freedom, is

calculated by

Wn = {θ −θ0}Ω̂−1
n {θ −θ0}

′
∼X 2(g)

where θ = {γ0,γ1} and θ0 = {0,1}.

For the failure rate forecast, Γ̂v is written as such that

Γ̂v,n(p) =
1
T

T

∑
t=v+1

{It,n(p)− ĪT,n(p)}{It−v,n(p)− ĪT,n(p)}
′

Then the Wald test statistic is
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Wn(p) = {Ûn(p)− p}Ω̂−1
n {Ûn(p)− p}

′
∼X 2(g)

D. Cramer von-Mises Criterion

Cramer von-Mises (CVM) statistics measures the distance between two distributions

such that

CV Mn = T ′
∫ 1

0
[y− F̂U,n(y)]2dy

where F̂U,n is the empirical distribution of the transforms Ut,n. Hence CVM statistics mea-

sures the norm-2 distance between the observation y (in this paper, the out-of-sample fore-

cast by the model) and the empirical distribution (realized return distribution). Under the

null hypothesis, the distribution of y is F̂U,n. The smaller the CVM statistic becomes, the

less likely the null hypothesis is rejected.

E. Robustness check of MLE estimators for the

three-state model

MLE estimators can be different by the initial value for the optimization of maximizing

likelihood. The optimization process is numerical search, and the result could be trapped by

a local maxima. Thus, I performed a robustness check on the MLE estimators by changing

initial value of each parameters. Table 18, 19, 20, 21, and 22 show the MLE estimators

by changing initial value of each parameter. The default initial parameters are set such

that: σs = 0.005,σm = 0.010,σv = 0.020,ψu = 0.02,ψl = 0.02,δ = 0.60,µ = 0.000303.
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Each table show the MLE estimation result by changing one parameter. Table 18, 19,

20 show the MLE estimators when I change σs, σm, and σv from 0.0025 to 0.0250 with

step by 0.0025 accordingly. Table 21 shows the MLE estimators by changing initial value

of ψu and ψl from 0.005 to 0.050 with step by 0.005. And lastly, Table 22 shows the

MLE estimators by changing initial value of δ from 0.10 to 1.00 with step by 0.1. These

tables show that the initial value affects the result significantly. However, in any of these

cases, I get the maximum likelihood (around 84,510) when the estimated parameters are

at the level of: σ̂s = 0.0054, σ̂m = 0.0108, σ̂v = 0.0270, ψ̂u = 0.0210, ψ̂l = 0.0240, δ̂ =

0.650, µ̂ = 0.000303. Hence, I take these value for the final MLE estimators.

Similarly, Table 23, 24, 25, 26, and 27 shows the same analysis for the first half sample

of the observation. The MLE estimators are robust for this period.

F. Robustness check of MLE estimators for the

multi-state model

MLE estimators can be different by the initial value for the optimization of maximizing

likelihood. The optimization process is numerical search, and the result could be trapped

by a local maxima. Thus, I performed a robustness check on the MLE estimators with

k = 1 by changing initial value of each parameters. Table 28, 29, 30, and 31 show the MLE

estimators by changing initial value of each parameter. The default initial parameters are

set such that: σ̄ = 0.010,a = 0.50,b = 0.40,ψu = 0.02,ψl = 0.02,δ = 0.60, µ̂ = 0.000303.

Each table shows the MLE estimation result by changing one parameter. Table 28 shows

the MLE estimators when I change σ̄ from 0.0025 to 0.0250, step by 0.0025 accordingly.

Table 29 shows the MLE estimators by changing the initial value of a and b from 0.10 to

1.00 with step by 0.1. Table 30 shows the MLE estimators by changing the initial value

of ψu and ψl from 0.005 to 0.050 with step by 0.005. And lastly, Table 31 shows the

MLE estimators by changing the initial value of δ from 0.10 to 1.00 with step by 0.1.
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These tables show that the final MLE estimators converge to very similar values with a

very similar log-likelihood level in any of these cases. I get stable estimated parameters,

which are at the level of: ˆ̄σ = 0.0106, â = 0.48, b̂ = 0.40, ψ̂u = 0.0210, ψ̂l = 0.0240, δ̂ =

0.600, µ̂ = 0.000303. Hence the MLE estimators are consistent.

Similarly, Table 32, 33, 34, and 35 shows the same analysis for the first half sample of

the observation. The MLE estimators are robust for this period.
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Table 1: Maximum Likelihood Estimation Over Full Sample (Three-state Model)

This table displays the model parameters from the maximum likelihood estimation
over T = 24,896 in-sample data. For the optimization, µ = 0.000303 (long-run mean
of return) is calibrated for all the models. To make the Hessian invertible during
the optimization, I also put optimization constraints of the form as following: σs ∈
(0.000,0.100), σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100), ψl ∈
(0.000,0.100), δ ∈ (0.000,1.000), γi j ∈ (0.000,0.500)(i, j∈{s,m,v}), ω ∈ (0.000,1.000),
α ∈ (0.000,1.000), β ∈ (0.000,1.000). Therefore, I use the method from Byrd et al.(1995)
for the optimization method, which can perform a constrained optimization. BIC is
the Bayesian Information Criterion, which adjusts the likelihood by the number of pa-
rameters. Small BIC means the adjusted likelihood is higher. BIC is given by BIC =
T−1(−2lnL+NP · lnT ), where NP is the number of free parameters in the specification.

A. TVTP MS
σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂

0.005291 0.010577 0.026725 0.020899 0.023271 0.648252
(0.000054) (0.000156) (0.000518) (0.000487) (0.000542) (0.019568)

µ̂ lnL BIC
0.000303 84,513.3 -13.58

B. CTP MS
σ̂s σ̂m σ̂v γ̂sm γ̂sv γ̂ms

0.005332 0.010813 0.026800 0.014534 0.001149 0.030144
(0.000059) (0.000178) (0.000523) (0.001530) (0.000561) (0.003082)

γ̂mv γ̂vs γ̂vm µ̂ lnL BIC
0.005223 0.004995 0.030467 0.000303 84,419.4 -13.56

(0.000959) (0.006970) (0.004870)

C. GARCH(1,1)

ω̂ α̂ β̂ µ̂ lnL BIC
0.001164 0.105696 0.883252 0.000303 84,062.6 -13.50

(0.000044) (0.004198) (0.004454)
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Table 2: Maximum Likelihood Estimation Over The First Half Sample (Three-state Model)

This table displays the model parameters from the maximum likelihood estimation over
the first half of the sample, T = 12,448. I use these parameters for the out-of-sample
analysis. For the optimization, µ = 0.000314 (long-run mean of return) is calibrated for
all the models. To make the Hessian invertible during the optimization, I also put opti-
mization constraints of the form as following: σs ∈ (0.000,0.100), σm ∈ (0.000,0.100),
σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000), γi j ∈
(0.000,0.500)(i, j ∈ {s,m,v}), ω ∈ (0.000,1.000), α ∈ (0.000,1.000), β ∈ (0.000,1.000).
Therefore, I use the method of Byrd et al. (1995) for the optimization method, which can
perform a constrained optimization. BIC is the Bayesian Information Criterion, which ad-
justs the likelihood by the number of parameters. Small BIC means the adjusted likelihood
is higher. BIC is given by BIC = T−1(−2lnL+NP · lnT ), where NP is the number of free
parameters in the specification.

A. TVTP MS
σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂

0.004700 0.009672 0.025814 0.017603 0.019639 0.648060
(0.000069) (0.000218) (0.000579) (0.000650) (0.000700) (0.024896)

µ̂ lnL BIC
0.000314 43,042.5 -13.83

B. CTP MS
σ̂s σ̂m σ̂v γ̂sm γ̂sv γ̂ms

0.004595 0.009520 0.025986 0.026153 0.000120 0.042408
(0.000084) (0.000246) (0.000636) (0.003689) (0.001077) (0.006093)

γ̂mv γ̂vs γ̂vm µ̂ lnL BIC
0.012589 0.000001 0.037275 0.000314 42,997.6 -13.81

(0.002294) (0.001473) (0.006484)

C. GARCH(1,1)
ω̂ α̂ β̂ µ̂ lnL BIC

0.001113 0.117550 0.874175 0.000314 42,654.1 -13.70
(0.000056) (0.006482) (0.006485)
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Table 3: Mincer-Zarnowitz Regression of Point Forecast (Three-state Model)

This table displays the coefficient of Mincer-Zarnowitz evaluation of the realized volatility
forecast RVt,n = γ0 + γ1Et−nRVt,n +ut . The regression is performed over T ′ = 12,448 out-
of-sample observations on forecasts produced by each model. If the realized volatility is
accurately predicted, the intercept γ0 should be close to zero, and the slope γ1 should be
close to one. The standard errors in the table are HAC adjusted (Newey and West, 1987).
The table also shows the p-value of single-parameter Wald statistic, which is performed
for a null hypothesis H0 : γ0 = 0, and H0 : γ1 = 1 correspondingly. The closer the p-value
becomes to one, the less probable the null hypothesis is rejected. Therefore, the closer
p-value to one implies better forecast ability.

One Day Five Days Ten Days
γ0 γ1 γ0 γ1 γ0 γ1

TVTP MS 0.0000 0.9237 0.0000 0.9432 -0.0001 0.9599
(0.000) (0.186) (0.000) (0.195) (0.000) (0.238)

p-value 85.34% 68.09% 61.41% 77.12% 53.81% 86.65%
CTP MS 0.0000 0.9645 0.0000 0.9752 -0.0001 0.9940

(0.000) (0.198) (0.000) (0.200) (0.000) (0.251)
p-value 96.72% 85.79% 83.84% 90.10% 75.43% 98.09%
GARCH(1,1) 0.0000 0.8224 0.0001 0.7556 0.0004 0.6704

(0.000) (0.107) (0.000) (0.118) (0.000) (0.142)
p-value 9.16% 9.65% 3.11% 3.86% 1.46% 2.01%

Twenty Days Forty Days Sixty Days
γ0 γ1 γ0 γ1 γ0 γ1

TVTP MS -0.0004 0.9832 -0.0013 1.0752 -0.0027 1.1729
(0.001) (0.288) (0.001) (0.267) (0.002) (0.273)

p-value 46.73% 95.35% 20.18% 77.85% 9.62% 52.58%
CTP MS -0.0002 1.0280 -0.0009 1.1119 -0.0021 1.2092

(0.000) (0.301) (0.001) (0.292) (0.002) (0.282)
p-value 63.45% 92.51% 36.57% 70.18% 18.13% 45.87%
GARCH(1,1) 0.0009 0.5664 0.0023 0.4726 0.0038 0.4189

(0.000) (0.167) (0.001) (0.178) (0.002) (0.153)
p-value 0.62% 0.95% 1.67% 0.31% 3.72% 0.01%
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Table 4: Failure Rate of Value-at-Risk Forecast (Three-state Model: Short Day Horizons)

This table displays the frequency of returns that go further down than the VaR forecasted by
the corresponding model (failure rate). The failure rate is calculated using T ′= 12,448 out-
of-sample observations. If the VaR is accurately predicted, the failure rate should be close
to the target percentile, p. Boldface numbers are the failure rate, which are statistically
indifferent from the target p at the 3% confidence level. The standard errors in the table are
HAC adjusted (Newey and West, 1987).

Quantile 1% 5% 10% 90% 95% 99%

A. One Day Horizon

TVTP MS 1.49% 6.27% 11.11% 89.33% 94.87% 99.26%
(0.11%) (0.21%) (0.28%) (0.26%) (0.19%) (0.08%)

p-value 0.00% 0.00% 0.00% 0.55% 25.83% 0.04%
CTP MS 1.61% 6.33% 11.28% 89.25% 94.81% 99.35%

(0.11%) (0.23%) (0.30%) (0.25%) (0.18%) (0.07%)
p-value 0.00% 0.00% 0.00% 0.21% 13.14% 0.00%
GARCH(1,1) 1.94% 5.52% 9.94% 91.27% 95.59% 99.11%

(0.13%) (0.22%) (0.29%) (0.21%) (0.16%) (0.08%)
p-value 0.00% 0.84% 42.21% 0.00% 0.01% 8.87%

B. Five Day Horizon

TVTP MS 1.53% 7.22% 13.26% 89.40% 95.51% 99.34%
(0.16%) (0.38%) (0.52%) (0.47%) (0.32%) (0.11%)

p-value 0.11% 0.00% 0.00% 10.40% 5.29% 0.10%
CTP MS 1.76% 7.58% 13.37% 89.03% 95.52% 99.44%

(0.20%) (0.43%) (0.57%) (0.44%) (0.30%) (0.10%)
p-value 0.02% 0.00% 0.00% 1.53% 5.51% 0.00%
GARCH(1,1) 2.15% 7.30% 12.28% 90.62% 95.88% 99.35%

(0.22%) (0.42%) (0.56%) (0.40%) (0.29%) (0.12%)
p-value 0.00% 0.00% 0.00% 6.17% 0.10% 0.08%

C. Ten Day Horizon
TVTP MS 1.04% 6.26% 12.24% 90.69% 96.02% 99.44%

(0.18%) (0.50%) (0.70%) (0.61%) (0.43%) (0.14%)
p-value 41.16% 0.57% 0.07% 13.22% 0.86% 0.09%
CTP MS 1.53% 7.04% 12.68% 90.50% 96.13% 99.55%

(0.24%) (0.56%) (0.77%) (0.59%) (0.39%) (0.13%)
p-value 0.84% 0.02% 0.03% 19.40% 0.19% 0.00%
GARCH(1,1) 2.44% 7.02% 11.96% 91.25% 96.45% 99.36%

(0.32%) (0.59%) (0.76%) (0.56%) (0.38%) (0.15%)
p-value 0.00% 0.03% 0.49% 1.22% 0.01% 0.88%
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Table 5: Failure Rate of Value-at-Risk Forecast (Three-state Model: Long Day Horizons)

This table displays the frequency of returns that go further down than the VaR forecasted by
the corresponding model (failure rate). The failure rate is calculated using T ′= 12,448 out-
of-sample observations. If the VaR is accurately predicted, the failure rate should be close
to the target percentile, p. Boldface numbers are the failure rate, which are statistically
indifferent from the target p at the 3% confidence level. The standard errors in the table are
HAC adjusted (Newey and West, 1987).

Quantile 1% 5% 10% 90% 95% 99%

A. Twenty Day Horizon

TVTP MS 0.60% 5.60% 12.09% 90.90% 96.30% 99.64%
(0.20%) (0.61%) (0.95%) (0.85%) (0.56%) (0.11%)

p-value 2.01% 16.10% 1.37% 14.47% 1.08% 0.00%
CTP MS 1.15% 6.95% 12.63% 90.80% 96.67% 99.69%

(0.27%) (0.75%) (1.02%) (0.80%) (0.50%) (0.11%)
p-value 29.13% 0.48% 0.60% 17.71% 0.08% 0.00%
GARCH(1,1) 2.33% 7.28% 12.32% 91.86% 96.60% 99.41%

(0.41%) (0.77%) (1.02%) (0.76%) (0.51%) (0.18%)
p-value 0.06% 0.16% 1.13% 0.71% 0.08% 0.97%

B. Forty Day Horizon

TVTP MS 0.70% 4.60% 10.82% 91.71% 96.65% 99.95%
(0.31%) (0.75%) (1.20%) (1.09%) (0.65%) (0.04%)

p-value 16.62% 29.75% 24.89% 5.78% 0.55% 0.00%
CTP MS 1.20% 6.25% 11.92% 91.54% 96.99% 99.95%

(0.41%) (0.95%) (1.34%) (1.07%) (0.59%) (0.03%)
p-value 31.19% 8.71% 7.07% 7.29% 0.03% 0.00%
GARCH(1,1) 2.36% 7.29% 12.10% 92.33% 97.01% 99.78%

(0.53%) (1.05%) (1.36%) (1.02%) (0.62%) (0.10%)
p-value 0.53% 1.50% 6.20% 1.11% 0.07% 0.00%

C. Sixty Day Horizon
TVTP MS 0.68% 4.29% 10.95% 91.84% 97.25% 99.85%

(0.32%) (0.83%) (1.40%) (1.21%) (0.59%) (0.10%)
p-value 15.65% 19.36% 24.77% 6.48% 0.01% 0.00%
CTP MS 1.19% 6.41% 12.36% 91.86% 97.62% 99.92%

(0.45%) (1.08%) (1.54%) (1.17%) (0.52%) (0.08%)
p-value 32.99% 8.84% 6.09% 5.97% 0.00% 0.00%
GARCH(1,1) 2.36% 7.50% 12.23% 92.51% 97.46% 99.73%

(0.61%) (1.20%) (1.51%) (1.13%) (0.55%) (0.18%)
p-value 1.33% 1.87% 6.98% 1.29% 0.00% 0.00%
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Table 6: Goodness-of-fit: Cramer-von Mises Criterion of Probability Integral Transform
(Three-state Model)

The table shows the Cramer-von Mise (CVM) distance between a uniform distribution
and the empirical distribution of the probability integral transform of one day, five days,
ten days, twenty days, forty days, and sixty days forecast. If the distribution is correctly
predicted by the model, the probability integral transform become close to the uniform
distribution (null hypothesis). The smaller the CVM statistic is, the less likely the null
hypothesis is rejected. Therefore, the smaller CVM criterion implies better forecast ability.

One Day Five
Days

Ten Days Twenty
Days

Forty
Days

Sixty
Days

TVTP MS 1.4809 7.7905 4.8739 4.3723 2.2906 1.1791
CTP MS 1.5849 10.6190 10.0120 11.5930 9.2199 7.8532
GARCH(1,1) 5.3180 6.2412 7.0131 8.8511 7.9298 7.7959
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Table 7: Maximum Likelihood Estimation Over Full Sample (Multi-state Model)

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn over full sample) is calibrated for all the models. To make the Hessian invert-
ible during the optimization, I also put optimization constraints of the form as follow-
ing: σ̄ ∈ (0.000,0.100), a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization.

k ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.010576 0.485822 0.401171 0.021359 0.025781 0.637379 84,539.85
(0.00017) (0.00488) (0.00616) (0.00051) (0.00063) (0.01890)

2 0.010529 0.614678 0.513070 0.021857 0.024664 0.611423 84,974.25
(0.00024) (0.00580) (0.00757) (0.00058) (0.00079) (0.01601)

3 0.010085 0.698387 0.592994 0.019859 0.021732 0.604298 85,045.90
(0.00029) (0.00612) (0.00891) (0.00061) (0.00082) (0.01465)

4 0.009995 0.755199 0.657604 0.017763 0.019261 0.618038 85,068.45
(0.00036) (0.00631) (0.00922) (0.00071) (0.00096) (0.01418)

5 0.009946 0.792360 0.697489 0.015906 0.01722 0.627195 85,078.85
(0.00046) (0.00695) (0.00988) (0.00082) (0.00116) (0.01363)

6 0.009838 0.820308 0.728760 0.014245 0.01536 0.638627 85,084.65
(0.00058) (0.00756) (0.01029) (0.00092) (0.00134) (0.01343)

7 0.009460 0.842569 0.750696 0.012692 0.013452 0.643592 85,088.60
(0.00062) (0.00767) (0.01049) (0.00088) (0.00129) (0.01329)

8 0.008966 0.858307 0.765904 0.011593 0.011939 0.642466 85,091.25
(0.00059) (0.00791) (0.01094) (0.00081) (0.00113) (0.01331)

9 0.008878 0.859290 0.764605 0.011693 0.011996 0.643012 85,089.90
(0.00061) (0.00908) (0.01217) (0.00082) (0.00111) (0.01365)

10 0.008439 0.868329 0.773204 0.010985 0.010951 0.64128 85,091.80
(0.00049) (0.00937) (0.01220) (0.00075) (0.00092) (0.01355)
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Table 8: Maximum Likelihood Estimation Over The First Half Sample (Multi-state Model)

This table displays the model parameters from the maximum likelihood estimation over the
first half of the sample, T

′
= 12,448. I use these parameters for the out-of-sample analysis.

For the optimization, µ̂ = 0.000314 (long-run mean of return over half sample) is cali-
brated for all the models. To make the Hessian invertible during the optimization, I also put
optimization constraints of the form as following: σ̄ ∈ (0.000,0.100), a ∈ (0.000,1.000),
b ∈ (0.000,1.000), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). There-
fore, I use the method of Byrd et al. (1995) for the optimization method, which can perform
a constrained optimization.

k ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.009780 0.461054 0.379203 0.018419 0.022074 0.647169 43,050.88
(0.00021) (0.00631) (0.00786) (0.00060) (0.00070) (0.02317)

2 0.009626 0.600924 0.497141 0.018523 0.020601 0.639573 43,274.25
(0.00028) (0.00740) (0.01053) (0.00066) (0.00083) (0.01970)

3 0.009442 0.694834 0.59364 0.016629 0.018017 0.641181 43,306.56
(0.00038) (0.00786) (0.01171) (0.00079) (0.00101) (0.01867)

4 0.008942 0.756763 0.653619 0.013975 0.014791 0.652767 43,317.93
(0.00054) (0.00896) (0.01206) (0.00095) (0.00127) (0.01787)

5 0.008496 0.798691 0.692578 0.011989 0.012399 0.660539 43,324.11
(0.00049) (0.00837) (0.01204) (0.00082) (0.00105) (0.01748)

6 0.008140 0.826986 0.719912 0.010650 0.010783 0.66565 43,327.08
(0.00050) (0.00928) (0.01303) (0.00084) (0.00106) (0.01739)

7 0.007864 0.845562 0.737222 0.009777 0.009716 0.667451 43,328.29
(0.00052) (0.01007) (0.01425) (0.00082) (0.00103) (0.01738)

8 0.007680 0.858374 0.749416 0.00928 0.009068 0.667495 43,328.39
(0.00052) (0.00995) (0.01444) (0.00076) (0.00095) (0.01746)

9 0.007494 0.869120 0.759318 0.008834 0.008503 0.665583 43,328.11
(0.00051) (0.00977) (0.01441) (0.00070) (0.00086) (0.01737)

10 0.007185 0.873673 0.761149 0.008561 0.008028 0.666526 43,327.71
(0.00047) (0.01342) (0.01776) (0.00080) (0.00087) (0.01741)
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Table 9: Vuong Test for The Model Selection

This table displays the Vuong (1989) test statistic on the log-likelihood of each k against that of
k = 10. Higher t-statistics means the likelihood difference is more statistically significant. Vuong
test statistics is given by V = (lnLk

T ′
− lnL10

T ′
)/
√

T , where lnLk
T ′

is the likelihood function of k 6= 10
model, and lnL10

T ′
is the likelihood function of the k = 10 model. Panel A shows the t-statistics and

p-values of the Vuong test for the full sample. Panel B shows the HAC adjusted version (1987) of
the Vuong test for the full sample. Panel C and Panel D shows the same for the half sample.

Full Sample
k 1 2 3 4 5 6 7 8 9
Vuong -3.498 -0.745 -0.291 -0.148 -0.082 -0.045 -0.020 -0.003 -0.012

A. Vuong Test
t-stats -12.24 -5.546 -3.319 -2.121 -1.368 -0.874 -0.493 -0.123 -0.959
p-value 0.000 0.000 0.001 0.017 0.086 0.191 0.311 0.451 0.169

B. HAC-adjusted Vuong Test
t-stats -8.209 -5.106 -3.178 -2.038 -1.343 -0.864 -0.475 -0.124 -1.008
p-value 0.000 0.000 0.001 0.021 0.090 0.194 0.318 0.451 0.157

Half Sample
k 1 2 3 4 5 6 7 8 9
Vuong -2.482 -0.479 -0.190 -0.088 -0.032 -0.006 0.005 0.006 0.004

C. Vuong Test
t-stats -6.044 -2.433 -1.350 -0.765 -0.347 -0.079 0.099 0.291 0.291
p-value 0.000 0.000 0.028 0.140 0.312 0.456 0.556 0.597 0.596

D. HAC-adjusted Vuong Test
t-stats -4.222 -2.298 -1.309 -0.747 -0.344 -0.080 0.105 0.191 0.196
p-value 0.000 0.001 0.032 0.145 0.313 0.455 0.559 0.606 0.609
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Table 10: Mincer-Zarnowitz Regression of Point Forecast (Multi-state Model)

This table displays the coefficient of Mincer-Zarnowitz evaluation of the realized volatility forecast RVt,n =
γ0+γ1Et−nRVt,n+ut . The regression is performed over T ′ = 12,448 out-of-sample observations on forecasts
produced by each model. If the realized volatility is accurately predicted, the intercept γ0 should be close to
zero, and the slope γ1 should be close to one. The standard errors in the table are HAC adjusted (Newey and
West, 1987).

One Day Five Days Ten Days Twenty Days Forty Days Sixty Days
k γ0 γ1 γ0 γ1 γ0 γ1 γ0 γ1 γ0 γ1 γ0 γ1

1 0.000 1.127 -0.00 1.218 -0.00 1.322 -0.00 1.505 -0.00 1.887 -0.01 2.218
(0.00) (0.03) (0.00) (0.02) (0.00) (0.02) (0.00) (0.03) (0.00) (0.04) (0.00) (0.05)

R2 0.084 0.195 0.219 0.213 0.186 0.158
2 0.000 1.267 -0.00 1.309 -0.00 1.325 -0.00 1.353 -0.00 1.495 -0.00 1.645

(0.00) (0.03) (0.00) (0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.03)
R2 0.148 0.331 0.346 0.308 0.253 0.212
3 0.000 1.258 -0.00 1.291 -0.00 1.294 -0.00 1.302 -0.00 1.403 -0.00 1.508

(0.00) (0.03) (0.00) (0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.03)
R2 0.147 0.346 0.349 0.310 0.257 0.221
4 0.000 1.241 -0.00 1.308 -0.00 1.344 -0.00 1.403 -0.00 1.586 -0.00 1.753

(0.00) (0.03) (0.00) (0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.02) (0.00) (0.03)
R2 0.170 0.371 0.389 0.330 0.267 0.221
5 0.000 0.982 0.000 1.029 -0.00 1.046 -0.00 1.085 -0.00 1.218 -0.00 1.324

(0.00) (0.02) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.02) (0.00) (0.02)
R2 0.177 0.387 0.389 0.339 0.265 0.227
6 0.000 1.035 -0.00 1.071 -0.00 1.073 -0.00 1.086 -0.00 1.178 -0.00 1.258

(0.00) (0.02) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.02) (0.00) (0.02)
R2 0.179 0.389 0.393 0.344 0.281 0.230
7 0.000 1.040 -0.00 1.077 -0.00 1.074 -0.00 1.075 -0.00 1.151 -0.00 1.219

(0.00) (0.02) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.02) (0.00) (0.02)
R2 0.177 0.391 0.395 0.345 0.281 0.229
8 0.000 0.943 0.000 0.969 0.000 0.966 -0.00 0.971 -0.00 1.048 -0.00 1.111

(0.00) (0.02) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.02) (0.00) (0.02)
R2 0.177 0.388 0.392 0.343 0.282 0.230
9 0.000 0.870 0.000 0.888 0.000 0.880 0.000 0.883 -0.00 0.955 -0.00 1.013

(0.00) (0.02) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.02)
R2 0.173 0.380 0.383 0.337 0.279 0.228
10 0.000 0.868 0.000 0.887 0.000 0.880 0.000 0.883 -0.00 0.956 -0.00 1.014

(0.00) (0.02) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.02)
R2 0.173 0.380 0.383 0.337 0.279 0.228
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Table 11: Failure Rate of Value-at-Risk Forecast (Multi-state Model: One Day Horizon)

This table displays the frequency of returns that go further down than the VaR forecasted by the
corresponding model (failure rate). The failure rate is calculated using T ′ = 12,448 out-of-sample
observations. If the VaR is accurately predicted, the failure rate should be close to the target per-
centile, p. Boldface numbers are the failure rate, which is statistically indifferent from the target p
at the 3% confidence level. The standard errors in the table are HAC adjusted (Newey and West,
1987).

Quantile 1% 5% 10% 90% 95% 99%

k=1 1.49% 6.27% 11.11% 89.33% 94.87% 99.26%
(0.11%) (0.21%) (0.28%) (0.26%) (0.19%) (0.08%)

p-value 0.00% 0.00% 0.00% 0.84% 16.47% 0.00%
k=2 1.44% 6.11% 11.11% 89.73% 95.08% 99.48%

(0.11%) (0.21%) (0.27%) (0.25%) (0.18%) (0.06%)
p-value 0.00% 0.00% 0.00% 14.43% 31.94% 0.00%
k=3 1.38% 5.83% 11.13% 89.81% 95.10% 99.51%

(0.10%) (0.21%) (0.28%) (0.25%) (0.18%) (0.06%)
p-value 0.01% 0.00% 0.00% 22.05% 28.87% 0.00%
k=4 1.42% 6.05% 11.17% 89.52% 95.13% 99.47%

(0.10%) (0.21%) (0.27%) (0.25%) (0.18%) (0.07%)
p-value 0.00% 0.00% 0.00% 3.06% 24.75% 0.00%
k=5 1.50% 6.03% 11.14% 89.75% 95.16% 99.46%

(0.11%) (0.21%) (0.27%) (0.26%) (0.19%) (0.07%)
p-value 0.00% 0.00% 0.00% 16.41% 19.89% 0.00%
k=6 1.43% 5.95% 11.04% 89.77% 95.19% 99.48%

(0.11%) (0.21%) (0.27%) (0.26%) (0.18%) (0.06%)
p-value 0.00% 0.00% 0.00% 18.80% 15.01% 0.00%
k=7 1.49% 5.94% 11.07% 89.67% 95.10% 99.41%

(0.11%) (0.21%) (0.26%) (0.26%) (0.19%) (0.07%)
p-value 0.00% 0.00% 0.00% 9.83% 29.47% 0.00%
k=8 1.46% 5.92% 11.04% 89.77% 95.16% 99.42%

(0.11%) (0.21%) (0.26%) (0.26%) (0.18%) (0.07%)
p-value 0.00% 0.00% 0.00% 18.78% 19.70% 0.00%
k=9 1.48% 5.98% 11.01% 89.73% 95.13% 99.43%

(0.11%) (0.21%) (0.26%) (0.26%) (0.18%) (0.07%)
p-value 0.00% 0.00% 0.01% 14.37% 23.52% 0.00%
k=10 1.45% 5.93% 11.08% 89.68% 95.17% 99.42%

(0.11%) (0.21%) (0.26%) (0.26%) (0.18%) (0.07%)
p-value 0.00% 0.00% 0.00% 10.57% 18.30% 0.00%
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Table 12: Failure Rate of Value-at-Risk Forecast (Multi-state Model: Five Day Horizon)

This table displays the frequency of returns that go further down than the VaR forecasted by the
corresponding model (failure rate). The failure rate is calculated using T ′ = 12,448 out-of-sample
observations. If the VaR is accurately predicted, the failure rate should be close to the target per-
centile, p. Boldface numbers are the failure rate, which is statistically indifferent from the target p
at the 3% confidence level. The standard errors in the table are HAC adjusted (Newey and West,
1987).

Quantile 1% 5% 10% 90% 95% 99%

k=1 1.53% 7.22% 13.26% 89.40% 95.51% 99.34%
(0.17%) (0.38%) (0.52%) (0.47%) (0.32%) (0.11%)

p-value 0.21% 0.00% 0.00% 6.65% 7.14% 0.02%
k=2 1.63% 7.03% 13.06% 89.45% 95.46% 99.30%

(0.18%) (0.39%) (0.53%) (0.47%) (0.31%) (0.12%)
p-value 0.03% 0.00% 0.00% 11.99% 7.13% 0.77%
k=3 1.60% 6.88% 12.76% 89.60% 95.66% 99.39%

(0.18%) (0.39%) (0.53%) (0.46%) (0.30%) (0.11%)
p-value 0.04% 0.00% 0.00% 19.63% 1.50% 0.01%
k=4 1.54% 7.06% 12.97% 89.21% 95.41% 99.34%

(0.18%) (0.38%) (0.53%) (0.48%) (0.32%) (0.11%)
p-value 0.12% 0.00% 0.00% 4.99% 9.85% 0.15%
k=5 1.62% 6.92% 12.82% 89.33% 95.44% 99.23%

(0.18%) (0.37%) (0.52%) (0.48%) (0.32%) (0.13%)
p-value 0.03% 0.00% 0.00% 8.30% 8.43% 3.83%
k=6 1.57% 6.87% 12.73% 89.40% 95.49% 99.27%

(0.18%) (0.37%) (0.52%) (0.48%) (0.31%) (0.13%)
p-value 0.08% 0.00% 0.00% 10.51% 6.02% 1.87%
k=7 1.66% 6.86% 12.74% 89.21% 95.37% 99.23%

(0.18%) (0.37%) (0.52%) (0.49%) (0.32%) (0.13%)
p-value 0.01% 0.00% 0.00% 5.23% 12.61% 3.59%
k=8 1.72% 6.92% 12.76% 89.31% 95.33% 99.23%

(0.19%) (0.37%) (0.51%) (0.48%) (0.32%) (0.12%)
p-value 0.01% 0.00% 0.00% 7.78% 14.94% 3.02%
k=9 1.68% 6.91% 12.79% 89.21% 95.37% 99.21%

(0.19%) (0.37%) (0.52%) (0.49%) (0.32%) (0.13%)
p-value 0.01% 0.00% 0.00% 5.17% 12.76% 5.62%
k=10 1.67% 6.96% 12.78% 89.32% 95.38% 99.23%

(0.19%) (0.37%) (0.52%) (0.48%) (0.32%) (0.13%)
p-value 0.02% 0.00% 0.00% 7.95% 12.33% 3.14%
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Table 13: Failure Rate of Value-at-Risk Forecast (Multi-state Model: Ten Day Horizon)

This table displays the frequency of returns that go further down than the VaR forecasted by the
corresponding model (failure rate). The failure rate is calculated using T ′ = 12,448 out-of-sample
observations. If the VaR is accurately predicted, the failure rate should be close to the target per-
centile, p. Boldface numbers are the failure rate, which is statistically indifferent from the target p
at the 3% confidence level. The standard errors in the table are HAC adjusted (Newey and West,
1987).

Quantile 1% 5% 10% 90% 95% 99%

k=1 1.07% 6.34% 12.20% 90.30% 95.93% 99.46%
(0.18%) (0.50%) (0.70%) (0.61%) (0.43%) (0.14%)

p-value 36.99% 0.46% 0.12% 31.49% 1.35% 0.06%
k=2 1.25% 6.46% 12.33% 90.27% 95.95% 99.35%

(0.21%) (0.52%) (0.72%) (0.62%) (0.43%) (0.15%)
p-value 11.22% 0.26% 0.06% 32.85% 1.36% 1.08%
k=3 1.21% 6.34% 12.02% 90.53% 96.11% 99.39%

(0.20%) (0.52%) (0.73%) (0.61%) (0.42%) (0.15%)
p-value 15.06% 0.52% 0.29% 19.02% 0.38% 0.49%
k=4 1.23% 6.46% 12.28% 90.02% 95.84% 99.26%

(0.21%) (0.52%) (0.72%) (0.63%) (0.43%) (0.16%)
p-value 13.24% 0.24% 0.08% 48.47% 2.62% 5.93%
k=5 1.32% 6.30% 12.03% 90.08% 95.79% 99.22%

(0.21%) (0.50%) (0.71%) (0.64%) (0.44%) (0.17%)
p-value 6.95% 0.49% 0.21% 45.00% 3.55% 10.59%
k=6 1.32% 6.26% 12.03% 90.25% 95.90% 99.25%

(0.22%) (0.50%) (0.71%) (0.63%) (0.44%) (0.17%)
p-value 6.73% 0.60% 0.22% 34.51% 1.97% 7.01%
k=7 1.35% 6.26% 12.11% 90.21% 95.89% 99.21%

(0.22%) (0.50%) (0.71%) (0.63%) (0.44%) (0.17%)
p-value 6.00% 0.56% 0.15% 37.03% 2.14% 11.58%
k=8 1.33% 6.24% 12.08% 90.06% 95.79% 99.18%

(0.22%) (0.50%) (0.71%) (0.64%) (0.44%) (0.18%)
p-value 6.37% 0.65% 0.17% 46.46% 3.83% 15.63%
k=9 1.39% 6.29% 12.11% 90.11% 95.82% 99.18%

(0.23%) (0.50%) (0.71%) (0.64%) (0.44%) (0.17%)
p-value 4.29% 0.51% 0.15% 42.98% 3.23% 14.37%
k=10 1.35% 6.25% 12.17% 90.12% 95.83% 99.19%

(0.22%) (0.50%) (0.71%) (0.64%) (0.44%) (0.18%)
p-value 5.83% 0.63% 0.11% 42.49% 3.09% 13.53%
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Table 14: Failure Rate of Value-at-Risk Forecast (Multi-state Model: Twenty Day Horizon)

This table displays the frequency of returns that go further down than the VaR forecasted by the
corresponding model (failure rate). The failure rate is calculated using T ′ = 12,448 out-of-sample
observations. If the VaR is accurately predicted, the failure rate should be close to the target per-
centile, p. Boldface numbers are the failure rate, which is statistically indifferent from the target p
at the 3% confidence level. The standard errors in the table are HAC adjusted (Newey and West,
1987).

Quantile 1% 5% 10% 90% 95% 99%

k=1 0.82% 6.05% 12.08% 90.37% 96.04% 99.47%
(0.20%) (0.61%) (0.95%) (0.85%) (0.56%) (0.11%)

p-value 20.35% 6.28% 1.66% 33.38% 3.46% 0.20%
k=2 1.03% 6.24% 12.19% 90.48% 96.06% 99.46%

(0.24%) (0.68%) (0.98%) (0.85%) (0.57%) (0.17%)
p-value 45.82% 3.51% 1.25% 28.78% 3.20% 0.30%
k=3 1.19% 6.30% 11.93% 90.72% 96.21% 99.47%

(0.26%) (0.70%) (0.98%) (0.84%) (0.55%) (0.16%)
p-value 22.71% 3.29% 2.46% 19.56% 1.47% 0.21%
k=4 1.07% 6.32% 12.20% 90.27% 95.83% 99.36%

(0.24%) (0.68%) (0.97%) (0.87%) (0.59%) (0.18%)
p-value 39.25% 2.67% 1.18% 37.64% 8.12% 2.16%
k=5 1.10% 6.33% 12.10% 90.09% 95.67% 99.22%

(0.25%) (0.67%) (0.96%) (0.89%) (0.61%) (0.21%)
p-value 34.57% 2.38% 1.46% 46.04% 13.64% 15.36%
k=6 1.07% 6.28% 12.21% 90.44% 95.73% 99.30%

(0.24%) (0.67%) (0.97%) (0.87%) (0.61%) (0.19%)
p-value 39.36% 2.78% 1.11% 30.43% 11.37% 5.82%
k=7 1.01% 6.26% 12.20% 90.21% 95.67% 99.25%

(0.24%) (0.66%) (0.96%) (0.89%) (0.61%) (0.20%)
p-value 48.50% 2.75% 1.11% 40.64% 13.37% 10.71%
k=8 1.07% 6.38% 12.24% 90.19% 95.61% 99.23%

(0.24%) (0.67%) (0.96%) (0.89%) (0.61%) (0.20%)
p-value 37.78% 1.89% 1.02% 41.70% 15.99% 12.68%
k=9 1.07% 6.29% 12.29% 90.18% 95.62% 99.23%

(0.24%) (0.66%) (0.97%) (0.88%) (0.62%) (0.20%)
p-value 39.20% 2.56% 0.89% 42.05% 15.95% 13.54%
k=10 1.10% 6.30% 12.28% 90.24% 95.60% 99.25%

(0.25%) (0.66%) (0.97%) (0.89%) (0.62%) (0.20%)
p-value 34.64% 2.37% 0.92% 39.25% 16.42% 10.43%
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Table 15: Failure Rate of Value-at-Risk Forecast (Multi-state Model: Forty Day Horizon)

This table displays the frequency of returns that go further down than the VaR forecasted by the
corresponding model (failure rate). The failure rate is calculated using T ′ = 12,448 out-of-sample
observations. If the VaR is accurately predicted, the failure rate should be close to the target per-
centile, p. Boldface numbers are the failure rate, which is statistically indifferent from the target p
at the 3% confidence level. The standard errors in the table are HAC adjusted (Newey and West,
1987).

Quantile 1% 5% 10% 90% 95% 99%

k=1 1.18% 5.42% 11.34% 90.64% 95.89% 99.63%
(0.42%) (0.88%) (1.28%) (1.16%) (0.75%) (0.16%)

p-value 33.69% 31.78% 14.82% 29.19% 11.62% 0.01%
k=2 1.10% 5.74% 11.64% 90.66% 96.05% 99.71%

(0.39%) (0.90%) (1.27%) (1.15%) (0.74%) (0.12%)
p-value 40.10% 20.63% 9.91% 28.32% 7.62% 0.00%
k=3 1.28% 5.84% 11.51% 90.77% 96.05% 99.66%

(0.41%) (0.92%) (1.27%) (1.14%) (0.74%) (0.15%)
p-value 25.26% 17.92% 11.72% 24.87% 7.70% 0.00%
k=4 1.18% 5.90% 11.97% 90.36% 95.75% 99.60%

(0.40%) (0.91%) (1.31%) (1.17%) (0.78%) (0.16%)
p-value 32.65% 16.24% 6.58% 38.08% 16.60% 0.01%
k=5 1.23% 5.85% 11.75% 90.21% 95.50% 99.48%

(0.40%) (0.90%) (1.28%) (1.18%) (0.80%) (0.19%)
p-value 28.29% 17.29% 8.54% 42.92% 26.82% 0.53%
k=6 1.13% 5.75% 11.75% 90.64% 95.73% 99.58%

(0.39%) (0.89%) (1.29%) (1.15%) (0.78%) (0.16%)
p-value 36.93% 19.80% 8.71% 28.97% 17.55% 0.02%
k=7 1.08% 5.71% 11.82% 90.48% 95.62% 99.55%

(0.36%) (0.88%) (1.28%) (1.16%) (0.80%) (0.16%)
p-value 41.08% 20.92% 7.75% 33.84% 21.89% 0.04%
k=8 1.07% 5.87% 11.88% 90.49% 95.62% 99.53%

(0.37%) (0.89%) (1.29%) (1.17%) (0.80%) (0.17%)
p-value 42.95% 16.53% 7.18% 33.64% 21.97% 0.08%
k=9 1.07% 5.84% 11.82% 90.54% 95.56% 99.53%

(0.37%) (0.90%) (1.28%) (1.16%) (0.80%) (0.17%)
p-value 43.03% 17.37% 7.78% 32.10% 24.10% 0.10%
k=10 1.03% 5.81% 11.83% 90.47% 95.62% 99.47%

(0.36%) (0.89%) (1.28%) (1.17%) (0.80%) (0.19%)
p-value 47.26% 18.13% 7.58% 34.46% 21.89% 0.64%
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Table 16: Failure Rate of Value-at-Risk Forecast (Multi-state Model: Sixty Day Horizon)

This table displays the frequency of returns that go further down than the VaR forecasted by the
corresponding model (failure rate). The failure rate is calculated using T ′ = 12,448 out-of-sample
observations. If the VaR is accurately predicted, the failure rate should be close to the target per-
centile, p. Boldface numbers are the failure rate, which is statistically indifferent from the target p
at the 3% confidence level. The standard errors in the table are HAC adjusted (Newey and West,
1987).

Quantile 1% 5% 10% 90% 95% 99%

k=1 1.15% 5.79% 11.86% 90.82% 95.88% 99.50%
(0.48%) (1.00%) (1.51%) (1.32%) (0.79%) (0.23%)

p-value 38.00% 21.59% 10.98% 26.81% 13.25% 1.51%
k=2 1.06% 5.96% 12.10% 90.70% 96.27% 99.64%

(0.43%) (1.00%) (1.51%) (1.28%) (0.74%) (0.20%)
p-value 44.68% 17.04% 8.19% 29.22% 4.34% 0.05%
k=3 1.19% 6.11% 11.99% 90.77% 96.21% 99.62%

(0.47%) (1.03%) (1.51%) (1.31%) (0.75%) (0.22%)
p-value 33.81% 13.99% 9.27% 27.64% 5.16% 0.21%
k=4 1.15% 6.26% 12.42% 90.19% 95.57% 99.53%

(0.43%) (1.06%) (1.50%) (1.34%) (0.83%) (0.23%)
p-value 36.77% 11.74% 5.33% 44.50% 24.71% 0.96%
k=5 1.09% 6.21% 12.30% 90.03% 95.43% 99.51%

(0.43%) (1.04%) (1.53%) (1.35%) (0.85%) (0.24%)
p-value 41.83% 12.17% 6.66% 49.04% 30.56% 1.77%
k=6 0.98% 5.92% 12.19% 90.35% 95.82% 99.62%

(0.39%) (1.02%) (1.51%) (1.32%) (0.80%) (0.21%)
p-value 47.62% 18.37% 7.35% 39.66% 15.18% 0.16%
k=7 0.94% 6.02% 12.26% 90.06% 95.67% 99.60%

(0.39%) (1.00%) (1.49%) (1.34%) (0.82%) (0.21%)
p-value 44.35% 15.30% 6.44% 48.31% 20.86% 0.22%
k=8 0.97% 6.01% 12.35% 90.14% 95.62% 99.59%

(0.39%) (1.02%) (1.51%) (1.34%) (0.82%) (0.22%)
p-value 46.79% 16.02% 5.98% 45.91% 22.45% 0.40%
k=9 0.94% 6.02% 12.36% 90.11% 95.64% 99.61%

(0.39%) (1.00%) (1.51%) (1.33%) (0.81%) (0.21%)
p-value 43.49% 15.35% 5.93% 46.61% 21.55% 0.22%
k=10 0.95% 6.00% 12.32% 90.20% 95.58% 99.59%

(0.38%) (1.01%) (1.50%) (1.31%) (0.83%) (0.22%)
p-value 45.02% 16.09% 6.09% 43.90% 24.22% 0.35%
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Table 17: Goodness-of-fit: Cramer-von Mises Criterion of Probability Integral Transform
(Multi-state Model)

The table shows the Cramer-von Mise (CVM) distance between a uniform distribution and
the empirical distribution of the probability integral transform of one day, five days, ten
days, twenty days, forty days, and sixty days forecast. If the model correctly predicts the
distribution, the probability integral transform becomes close to the uniform distribution
(null hypothesis). The smaller the CVM statistic is, the less likely the null hypothesis is
rejected. Therefore, the smaller CVM criterion implies better forecast ability.

One Day Five Days Ten Days Twenty
Days

Forty Days Sixty Days

k=1 1.4915 8.1909 4.9579 4.4430 2.1289 0.8829
k=2 1.4486 8.3581 5.3296 5.0028 2.8062 1.2970
k=3 1.3320 7.7052 4.8234 4.4128 2.1912 1.0131
k=4 1.3997 7.8948 4.8613 4.6875 2.8630 1.5022
k=5 1.3715 7.0235 4.0024 3.8058 2.7040 1.7290
k=6 1.3807 6.9587 4.1211 3.9707 2.5621 1.4340
k=7 1.3977 6.8821 3.9742 3.8931 2.7642 1.7848
k=8 1.3881 6.7435 3.9785 3.8851 2.7755 1.8132
k=9 1.3913 6.6860 3.9207 3.8039 2.8145 1.8763
k=10 1.4052 6.7182 3.8732 3.8034 2.7868 1.8821
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Table 18: Robustness Analysis (Three-state model: MLE Estimators by Changing Initial
σs)

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σs ∈ (0.000,0.100),
σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimiza-
tion method, which can perform a constrained optimization. In this table, I changed
the initial value of σs with 0.0025 ×n where n = {1,2,3, ...,10}. For example, the
first result in this table: σ̂s = 0.02612, σ̂m = 0.00545, σ̂v = 0.01069, ψ̂u = 0.01392,
ψ̂l = 0.01225, and δ̂ = 0.67280 is the MLE estimators when the initial values are set such
that: σs = 0.0025×n = 0.0025×1 = 0.0025, σm = 0.01, σv = 0.02, ψu = 0.02, ψl = 0.02,
and δ = 0.60.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.0025×

n
0.010 0.020 0.02 0.02 0.60

1 0.02612 0.00545 0.01069 0.01392 0.01225 0.67280 84,171.42
(0.00050) (0.00005) (0.00015) (0.00028) (0.00027) (0.02322)

2 0.00529 0.01058 0.02673 0.02090 0.02327 0.64824 84,513.31
(0.00005) (0.00016) (0.00052) (0.00049) (0.00054) (0.01957)

3 0.00534 0.01085 0.02806 0.02110 0.02387 0.64882 84,509.03
(0.00005) (0.00016) (0.00060) (0.00049) (0.00055) (0.01950)

4 0.00537 0.01080 0.02712 0.02118 0.02401 0.65041 84,511.87
(0.00005) (0.00016) (0.00053) (0.00049) (0.00056) (0.02027)

5 0.01048 0.00552 0.02475 0.01439 0.01365 0.62062 84,103.68
(0.00016) (0.00006) (0.00044) (0.00040) (0.00036) (0.03101)

6 0.01048 0.00552 0.02569 0.01412 0.01359 0.62246 84,107.61
(0.00016) (0.00006) (0.00048) (0.00037) (0.00034) (0.02837)

7 0.01061 0.00555 0.02676 0.01442 0.01362 0.61782 84,100.08
(0.00016) (0.00006) (0.00056) (0.00038) (0.00034) (0.02821)

8 0.01025 0.00531 0.02691 0.01217 0.01189 0.99758 84,195.78
(0.00015) (0.00006) (0.00058) (0.00025) (0.00022) (0.04767)

9 0.00537 0.01075 0.02685 0.02103 0.02354 0.66459 84,512.17
(0.00005) (0.00016) (0.00052) (0.00049) (0.00054) (0.02050)

10 0.01049 0.00551 0.02561 0.01410 0.01347 0.62822 84,110.16
(0.00016) (0.00006) (0.00048) (0.00037) (0.00033) (0.02823)
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Table 19: Robustness Analysis (Three-state model: MLE Estimators by Changing Initial
σm)

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σs ∈ (0.000,0.100),
σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimization
method, which can perform a constrained optimization. In this table, I changed the initial
value of σm with 0.0025 ×n where n = {1,2,3, ...,10}. For example, the first result in
this table: σ̂s = 0.01031, σ̂m = 0.00546, σ̂v = 0.02509, ψ̂u = 0.01429, ψ̂l = 0.01374, and
δ̂ = 0.58545 is the MLE estimators when the initial values are set such that: σs = 0.005,
σm = 0.0025×n = 0.0025×1 = 0.0025, σv = 0.02, ψu = 0.02, ψl = 0.02, and δ = 0.60.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.005 0.0025×

n
0.020 0.02 0.02 0.60

1 0.01031 0.00546 0.02509 0.01429 0.01374 0.58545 84,094.24
(0.00016) (0.00006) (0.00046) (0.00039) (0.00036) (0.02659)

2 0.00539 0.01087 0.02689 0.02181 0.02450 0.61934 84,509.76
(0.00005) (0.00016) (0.00051) (0.00052) (0.00058) (0.01908)

3 0.00537 0.01090 0.02746 0.02165 0.02406 0.64140 84,510.23
(0.00005) (0.00016) (0.00055) (0.00051) (0.00055) (0.01944)

4 0.00529 0.01058 0.02673 0.02090 0.02327 0.64824 84,513.31
(0.00005) (0.00016) (0.00052) (0.00049) (0.00054) (0.01957)

5 0.00537 0.01074 0.02603 0.02166 0.02409 0.64049 84,510.51
(0.00005) (0.00016) (0.00047) (0.00052) (0.00058) (0.02040)

6 0.00536 0.01088 0.02772 0.02136 0.02391 0.65164 84,510.26
(0.00005) (0.00016) (0.00057) (0.00050) (0.00055) (0.01978)

7 0.00535 0.01086 0.02737 0.02159 0.02370 0.64988 84,510.25
(0.00005) (0.00016) (0.00055) (0.00051) (0.00054) (0.01948)

8 0.00539 0.01086 0.02696 0.02145 0.02408 0.65245 84,511.40
(0.00005) (0.00016) (0.00052) (0.00050) (0.00056) (0.02043)

9 0.00534 0.01074 0.02636 0.02107 0.02326 0.69352 84,510.47
(0.00005) (0.00016) (0.00049) (0.00049) (0.00053) (0.02219)

10 0.00554 0.02365 0.00955 0.05171 0.05315 0.78650 84,067.64
(0.00007) (0.00043) (0.00018) (0.00133) (0.00132) (0.02527)
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Table 20: Robustness Analysis (Three-state model: MLE Estimators by Changing Initial
σv)

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σs ∈ (0.000,0.100),
σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimization
method, which can perform a constrained optimization. In this table, I changed the ini-
tial value of σv with 0.0025 ×n where n = {1,2,3, ...,10}. For example, the first result in
this table: σ̂s = 0.00560, σ̂m = 0.02391, σ̂v = 0.00979, ψ̂u = 0.05248, ψ̂l = 0.05535, and
δ̂ = 0.69793 is the MLE estimators when the initial values are set such that: σs = 0.005,
σm = 0.01, σv = 0.0025×n = 0.0025×1 = 0.0025, ψu = 0.02, ψl = 0.02, and δ = 0.60.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.005 0.010 0.0025×

n
0.02 0.02 0.60

1 0.00560 0.02391 0.00979 0.05248 0.05535 0.69793 84,041.13
(0.00007) (0.00043) (0.00020) (0.00137) (0.00142) (0.02133)

2 0.00541 0.01113 0.02823 0.02260 0.02490 0.65679 84,503.56
(0.00005) (0.00017) (0.00061) (0.00054) (0.00058) (0.02150)

3 0.00536 0.01081 0.02644 0.02192 0.02407 0.65224 84,510.59
(0.00005) (0.00016) (0.00049) (0.00053) (0.00057) (0.02089)

4 0.00539 0.01087 0.02695 0.02144 0.02418 0.64838 84,511.26
(0.00005) (0.00016) (0.00052) (0.00050) (0.00057) (0.02029)

5 0.00532 0.01074 0.02725 0.02069 0.02353 0.65907 84,511.88
(0.00005) (0.00016) (0.00055) (0.00047) (0.00054) (0.01996)

6 0.00538 0.01087 0.02697 0.02136 0.02409 0.65760 84,511.53
(0.00005) (0.00016) (0.00052) (0.00050) (0.00056) (0.02073)

7 0.00540 0.01099 0.02730 0.02143 0.02439 0.65417 84,509.85
(0.00005) (0.00017) (0.00054) (0.00050) (0.00057) (0.02052)

8 0.00529 0.01058 0.02673 0.02090 0.02327 0.64824 84,513.31
(0.00005) (0.00016) (0.00052) (0.00049) (0.00054) (0.01957)

9 0.00537 0.01075 0.02656 0.02112 0.02374 0.65242 84,512.36
(0.00005) (0.00016) (0.00050) (0.00049) (0.00055) (0.02018)

10 0.00536 0.01084 0.02695 0.02152 0.02389 0.64870 84,511.71
(0.00005) (0.00016) (0.00052) (0.00051) (0.00055) (0.01988)
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Table 21: Robustness Analysis (Three-state model: MLE Estimators by Changing Initial
ψu and ψl)

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σs ∈ (0.000,0.100),
σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimiza-
tion method, which can perform a constrained optimization. In this table, I changed the
initial value of ψu and ψl with 0.005 ×n where n = {1,2,3, ...,10}. For example, the
first result in this table: σ̂s = 0.00537, σ̂m = 0.01083, σ̂v = 0.02682, ψ̂u = 0.02155,
ψ̂l = 0.02402, and δ̂ = 0.66263 is the MLE estimators when the initial values are set
such that: σs = 0.005, σm = 0.01, σv = 0.02, ψu = 0.005× n = 0.005× 1 = 0.005,
ψl = 0.005×n = 0.005×1 = 0.005, δ = 0.60.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.005 0.010 0.0025×

n
0.02 0.02 0.60

1 0.00537 0.01083 0.02682 0.02155 0.02402 0.66263 84,511.63
(0.00005) (0.00016) (0.00051) (0.00051) (0.00056) (0.02126)

2 0.00529 0.01058 0.02673 0.02090 0.02327 0.64824 84,513.31
(0.00005) (0.00016) (0.00052) (0.00049) (0.00054) (0.01957)

3 0.00535 0.01073 0.02695 0.02132 0.02385 0.62427 84,511.37
(0.00005) (0.00016) (0.00052) (0.00050) (0.00056) (0.01858)

4 0.00533 0.01064 0.02661 0.02035 0.02337 0.61500 84,507.79
(0.00005) (0.00016) (0.00051) (0.00047) (0.00055) (0.01732)

5 0.00541 0.01090 0.02681 0.02231 0.02511 0.58247 84,503.92
(0.00005) (0.00016) (0.00051) (0.00054) (0.00061) (0.01778)

6 0.00542 0.01095 0.02681 0.02227 0.02532 0.57432 84,501.72
(0.00005) (0.00016) (0.00051) (0.00053) (0.00062) (0.01742)

7 0.00543 0.01093 0.02682 0.02251 0.02554 0.56271 84,498.87
(0.00005) (0.00016) (0.00051) (0.00054) (0.00063) (0.01718)

8 0.00541 0.01091 0.02680 0.02289 0.02565 0.54685 84,494.54
(0.00005) (0.00016) (0.00050) (0.00056) (0.00064) (0.01656)

9 0.00538 0.01075 0.02608 0.02195 0.02480 0.56138 84,499.22
(0.00005) (0.00016) (0.00047) (0.00053) (0.00061) (0.01654)

10 0.00539 0.01085 0.02688 0.02135 0.02403 0.65907 84,511.45
(0.00005) (0.00016) (0.00052) (0.00050) (0.00056) (0.02078)
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Table 22: Robustness Analysis (Three-state model: MLE Estimators by Changing Initial
δ )

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σs ∈ (0.000,0.100),
σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimization
method, which can perform a constrained optimization. In this table, I changed the ini-
tial value of δ with 0.1 ×n where n = {1,2,3, ...,10}. For example, the first result in
this table: σ̂s = 0.00537, σ̂m = 0.01083, σ̂v = 0.02682, ψ̂u = 0.02155, ψ̂l = 0.02402, and
δ̂ = 0.66263 is the MLE estimators when the initial values are set such that: σs = 0.005,
σm = 0.01, σv = 0.02, ψu = 0.02, ψl = 0.02, and δ = 0.10×n = 0.10×1 = 0.10.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.005 0.010 0.0025×

n
0.02 0.02 0.60

1 0.00947 0.00514 0.02355 0.01330 0.01305 0.48916 84,025.59
(0.00019) (0.00008) (0.00053) (0.00035) (0.00034) (0.01556)

2 0.01065 0.00539 0.02584 0.01225 0.01218 1.00000 84,195.46
(0.00016) (0.00006) (0.00051) (0.00024) (0.00021) (0.04516)

3 0.01051 0.00538 0.02548 0.01231 0.01204 1.00000 84,197.00
(0.00015) (0.00006) (0.00048) (0.00024) (0.00021) (0.04462)

4 0.00549 0.01112 0.02716 0.02432 0.02791 0.47054 84,455.64
(0.00005) (0.00016) (0.00052) (0.00061) (0.00074) (0.01473)

5 0.00541 0.01080 0.02685 0.02196 0.02503 0.56819 84,501.09
(0.00005) (0.00016) (0.00051) (0.00052) (0.00061) (0.01704)

6 0.00529 0.01058 0.02673 0.02090 0.02327 0.64825 84,513.31
(0.00005) (0.00016) (0.00052) (0.00049) (0.00054) (0.01957)

7 0.00535 0.01089 0.02787 0.02065 0.02357 0.73502 84,502.62
(0.00005) (0.00016) (0.00059) (0.00047) (0.00053) (0.02512)

8 0.00539 0.01087 0.02702 0.02115 0.02381 0.70629 84,507.85
(0.00005) (0.00016) (0.00053) (0.00049) (0.00054) (0.02384)

9 0.00537 0.01090 0.02843 0.02079 0.02363 0.78673 84,489.68
(0.00005) (0.00017) (0.00063) (0.00047) (0.00053) (0.03092)

10 0.00542 0.01111 0.02785 0.02108 0.02416 0.86564 84,466.84
(0.00005) (0.00018) (0.00059) (0.00048) (0.00054) (0.04688)
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Table 23: Robustness Analysis (Three-state model: Half Sample. MLE Estimators by
Changing Initial σs)

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σs ∈ (0.000,0.100), σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this table,
I changed the initial value of σs with 0.0025 ×n where n = {1,2,3, ...,10}. For example,
the first result in this table: σ̂s = 0.00472, σ̂m = 0.00971, σ̂v = 0.02646, ψ̂u = 0.01759,
ψ̂l = 0.01964, and δ̂ = 0.62878 is the MLE estimators when the initial values are set such
that: σs = 0.0025×n = 0.0025×1 = 0.0025, σm = 0.01, σv = 0.02, ψu = 0.02, ψl = 0.02,
and δ = 0.60.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.0025×

n
0.010 0.020 0.02 0.02 0.60

1 0.00472 0.00971 0.02646 0.01759 0.01964 0.62878 43,040.42
(0.00007) (0.00021) (0.00062) (0.00057) (0.00062) (0.02143)

2 0.00478 0.00995 0.02634 0.01833 0.02056 0.64066 43,040.88
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02336)

3 0.00477 0.01002 0.02681 0.01875 0.02069 0.64071 43,039.84
(0.00007) (0.00022) (0.00064) (0.00062) (0.00066) (0.02348)

4 0.00478 0.00997 0.02683 0.01840 0.02072 0.63271 43,040.06
(0.00007) (0.00022) (0.00064) (0.00060) (0.00067) (0.02300)

5 0.00931 0.00497 0.02395 0.01269 0.01184 0.61475 42,771.76
(0.00024) (0.00010) (0.00057) (0.00056) (0.00052) (0.03456)

6 0.00960 0.00494 0.02465 0.01253 0.01163 0.61556 42,774.11
(0.00028) (0.00009) (0.00063) (0.00053) (0.00048) (0.03229)

7 0.00994 0.00497 0.02730 0.01265 0.01217 0.61167 42,761.89
(0.00028) (0.00009) (0.00080) (0.00052) (0.00050) (0.03666)

8 0.01033 0.00513 0.02856 0.01358 0.01179 0.61377 42,739.90
((0.00033)(0.00008) (0.00115) (0.00049) (0.00038) (0.03210)

9 0.00478 0.00995 0.02639 0.01823 0.02055 0.65416 43,041.06
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02429)

10 0.00939 0.00494 0.02409 0.01249 0.01172 0.62257 42,775.65
(0.00026) (0.00010) (0.00059) (0.00056) (0.00052) (0.03487)
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Table 24: Robustness Analysis (Three-state model: Half Sample. MLE Estimators by
Changing Initial σm)

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σs ∈ (0.000,0.100), σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this table,
I changed the initial value of σm with 0.0025 ×n where n = {1,2,3, ...,10}. For example,
the first result in this table: σ̂s = 0.00921, σ̂m = 0.00485, σ̂v = 0.02449, ψ̂u = 0.01256,
ψ̂l = 0.01152, and δ̂ = 0.58798 is the MLE estimators when the initial values are set such
that: σs = 0.005, σm = 0.0025×n= 0.0025×1= 0.0025, σv = 0.02, ψu = 0.02, ψl = 0.02,
and δ = 0.60.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.005 0.0025×

n
0.020 0.02 0.02 0.60

1 0.00921 0.00485 0.02449 0.01256 0.01152 0.58798 42,768.87
(0.00025) (0.00011) (0.00063) (0.00060) (0.00054) (0.03144)

2 0.00475 0.00987 0.02685 0.01835 0.02094 0.61611 43,039.33
(0.00007) (0.00021) (0.00064) (0.00060) (0.00070) (0.02256)

3 0.00479 0.00997 0.02641 0.01836 0.02071 0.63936 43,040.56
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02349)

4 0.00478 0.00995 0.02634 0.01833 0.02056 0.64066 43,040.88
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02336)

5 0.00471 0.00982 0.02740 0.01765 0.02010 0.64026 43,039.74
(0.00007) (0.00021) (0.00069) (0.00057) (0.00065) (0.02257)

6 0.00477 0.01000 0.02715 0.01833 0.02072 0.64248 43,040.00
(0.00007) (0.00022) (0.00066) (0.00060) (0.00067) (0.02353)

7 0.00478 0.00996 0.02668 0.01848 0.02092 0.64292 43,040.34
(0.00007) (0.00022) (0.00063) (0.00061) (0.00069) (0.02426)

8 0.00478 0.00994 0.02638 0.01825 0.02054 0.64518 43,041.03
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02367)

9 0.00476 0.01000 0.02642 0.01835 0.02069 0.65631 43,041.24
(0.00007) (0.00022) (0.00061) (0.00060) (0.00068) (0.02459)

10 0.00510 0.02397 0.00890 0.05065 0.05279 0.80127 42,766.43
(0.00008) (0.00053) (0.00023) (0.00182) (0.00170) (0.03444)
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Table 25: Robustness Analysis (Three-state model: Half Sample. MLE Estimators by
Changing Initial σv)

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σs ∈ (0.000,0.100), σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this table,
I changed the initial value of σv with 0.0025 ×n where n = {1,2,3, ...,10}. For example,
the first result in this table: σ̂s = 0.00509, σ̂m = 0.02355, σ̂v = 0.00904, ψ̂u = 0.04943,
ψ̂l = 0.05212, and δ̂ = 0.71048 is the MLE estimators when the initial values are set such
that: σs = 0.005, σm = 0.01, σv = 0.0025×n= 0.0025×1= 0.0025, ψu = 0.02, ψl = 0.02,
and δ = 0.60.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.005 0.010 0.0025×

n
0.02 0.02 0.60

1 0.00509 0.02355 0.00904 0.04943 0.05212 0.71048 42,752.81
(0.00008) (0.00049) (0.00024) (0.00174) (0.00165) (0.02807)

2 0.00477 0.00989 0.02575 0.01813 0.02059 0.64324 43,040.57
(0.00007) (0.00022) (0.00057) (0.00060) (0.00068) (0.02377)

3 0.00478 0.00992 0.02634 0.01839 0.02067 0.64712 43,041.01
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02420)

4 0.00474 0.00986 0.02587 0.01921 0.02092 0.63941 43,039.40
(0.00007) (0.00022) (0.00058) (0.00065) (0.00070) (0.02490)

5 0.00470 0.00967 0.02581 0.01760 0.01964 0.64806 43,042.48
(0.00007) (0.00021) (0.00058) (0.00057) (0.00063) (0.02290)

6 0.00478 0.00999 0.02648 0.01828 0.02064 0.64956 43,040.94
(0.00007) (0.00022) (0.00062) (0.00060) (0.00067) (0.02398)

7 0.00476 0.00997 0.02830 0.01774 0.02049 0.64946 43,035.75
(0.00007) (0.00022) (0.00076) (0.00057) (0.00065) (0.02340)

8 0.00478 0.00995 0.02634 0.01833 0.02056 0.64066 43,040.88
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02336)

9 0.00476 0.01002 0.02747 0.01886 0.02093 0.63823 43,038.59
(0.00007) (0.00022) (0.00068) (0.00062) (0.00067) (0.02377)

10 0.00476 0.00990 0.02564 0.01845 0.02059 0.64152 43,040.50
(0.00007) (0.00022) (0.00056) (0.00061) (0.00068) (0.02380)
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Table 26: Robustness Analysis (Three-state model: Half Sample. MLE Estimators by
Changing Initial ψu and ψl)

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σs ∈ (0.000,0.100), σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this table, I
changed the initial value of ψu and ψl with 0.005×n where n = {1,2,3, ...,10}. For exam-
ple, the first result in this table: σ̂s = 0.00478, σ̂m = 0.00997, σ̂v = 0.02640, ψ̂u = 0.01823,
ψ̂l = 0.02060, and δ̂ = 0.65115 is the MLE estimators when the initial values are set
such that: σs = 0.005, σm = 0.01, σv = 0.02, ψu = 0.005× n = 0.005× 1 = 0.005,
ψl = 0.005×n = 0.005×1 = 0.005, δ = 0.60.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.005 0.010 0.0025×

n
0.02 0.02 0.60

1 0.00478 0.00997 0.02640 0.01823 0.02060 0.65115 43,041.06
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02408)

2 0.00478 0.00995 0.02634 0.01833 0.02056 0.64066 43,040.88
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02336)

3 0.00473 0.00990 0.02734 0.01791 0.02031 0.62910 43,039.30
(0.00007) (0.00021) (0.00068) (0.00058) (0.00065) (0.02200)

4 0.00483 0.01022 0.02673 0.01946 0.02185 0.62098 43,035.97
(0.00007) (0.00023) (0.00062) (0.00065) (0.00073) (0.02378)

5 0.00492 0.01074 0.02781 0.02029 0.02369 0.56911 43,021.40
(0.00007) (0.00026) (0.00070) (0.00069) (0.00083) (0.02136)

6 0.00482 0.01004 0.02645 0.01918 0.02174 0.57076 43,032.43
(0.00007) (0.00022) (0.00060) (0.00063) (0.00073) (0.02053)

7 0.00482 0.01005 0.02640 0.01942 0.02196 0.55746 43,029.57
(0.00007) (0.00022) (0.00060) (0.00064) (0.00074) (0.02004)

8 0.00473 0.00980 0.02612 0.01936 0.02157 0.55666 43,031.00
(0.00007) (0.00021) (0.00059) (0.00065) (0.00074) (0.02030)

9 0.00483 0.01003 0.02639 0.01961 0.02221 0.53707 43,024.54
(0.00007) (0.00022) (0.00060) (0.00065) (0.00075) (0.01922)

10 0.00483 0.01010 0.02631 0.02000 0.02260 0.52130 43,019.65
(0.00007) (0.00022) (0.00059) (0.00066) (0.00077) (0.01866)
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Table 27: Robustness Analysis (Three-state model: Half Sample. MLE Estimators by
Changing Initial δ )

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σs ∈ (0.000,0.100), σm ∈ (0.000,0.100), σv ∈ (0.000,0.100), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this ta-
ble, I changed the initial value of δ with 0.1 ×n where n = {1,2,3, ...,10}. For example,
the first result in this table: σ̂s = 0.01000, σ̂m = 0.00562, σ̂v = 0.02462, ψ̂u = 0.02383,
ψ̂l = 0.02418, and δ̂ = 0.23488 is the MLE estimators when the initial values are set
such that: σs = 0.005, σm = 0.01, σv = 0.02, ψu = 0.02, ψl = 0.02, and δ = 0.10× n =
0.10×1 = 0.10.

n σ̂s σ̂m σ̂v ψ̂u ψ̂l δ̂ lnL
Initial Value 0.005 0.010 0.0025×

n
0.02 0.02 0.60

1 0.01000 0.00562 0.02462 0.02383 0.02418 0.23488 42,503.59
(0.00022) (0.00010) (0.00054) (0.00160) (0.00180) (0.01917)

2 0.00893 0.00466 0.02475 0.01023 0.00997 0.78117 42,818.51
(0.00021) (0.00009) (0.00062) (0.00036) (0.00033) (0.03635)

3 0.00478 0.01001 0.02688 0.01822 0.02060 0.66678 43,040.43
(0.00007) (0.00022) (0.00065) (0.00059) (0.00066) (0.02513)

4 0.00486 0.01019 0.02715 0.02022 0.02325 0.48197 43,003.27
(0.00007) (0.00022) (0.00064) (0.00066) (0.00077) (0.01684)

5 0.00483 0.01008 0.02663 0.01938 0.02202 0.56013 43,029.75
(0.00007) (0.00022) (0.00061) (0.00064) (0.00074) (0.02016)

6 0.00478 0.00995 0.02634 0.01833 0.02056 0.64066 43,040.88
(0.00007) (0.00022) (0.00061) (0.00060) (0.00067) (0.02336)

7 0.00476 0.00990 0.02642 0.01785 0.02004 0.72747 43,038.23
(0.00007) (0.00022) (0.00062) (0.00058) (0.00064) (0.02955)

8 0.00476 0.00989 0.02632 0.01786 0.02007 0.72164 43,038.76
(0.00007) (0.00022) (0.00061) (0.00058) (0.00064) (0.02917)

9 0.00478 0.01001 0.02657 0.01792 0.02016 0.80456 43,026.29
(0.00007) (0.00023) (0.00064) (0.00058) (0.00064) (0.03933)

10 0.00472 0.00979 0.02805 0.01717 0.01947 0.89584 43,006.60
(0.00007) (0.00022) (0.00077) (0.00054) (0.00060) (0.05553)
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Table 28: Robustness Analysis (Multi-state model: k = 1 MLE Estimators by Changing
Initial σ̄ )

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σ̄ ∈ (0.000,0.100),
a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimization
method, which can perform a constrained optimization. In this table, I changed the initial
value of σ̄ with 0.0025 ×n where n = {1,2,3, ...,10}. For example, the first result in the
table: σ̄ = 0.01061, â = 0.48532, b̂ = 0.40105, ψ̂u = 0.02165, ψ̂l = 0.02618, δ̂ = 0.60949
is the MLE estimator when the initial value is set such that: σ̄ = 0.0025×n = 0.0025×1 =
0.0025, a = 0.50, b = 0.40, ψu = 0.02, ψl = 0.02, δ = 0.60.

Initial Value 0.0025×
n

0.50 0.40 0.02 0.02 0.60

n ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.01061 0.48532 0.40105 0.02165 0.02618 0.60949 84,538.55
(0.00017) (0.00488) (0.00619) (0.00052) (0.00065) (0.01777)

2 0.01061 0.48525 0.40105 0.02166 0.02618 0.60992 84,538.55
(0.00017) (0.00488) (0.00619) (0.00052) (0.00066) (0.01781)

3 0.01058 0.48656 0.40070 0.02164 0.02618 0.61056 84,538.65
(0.00017) (0.00490) (0.00616) (0.00052) (0.00066) (0.01786)

4 0.01056 0.49092 0.40891 0.0217 0.02607 0.60728 84,537.25
(0.00016) (0.00493) (0.00622) (0.00052) (0.00065) (0.01788)

5 0.01057 0.48741 0.40478 0.02139 0.02576 0.62934 84,539.5
(0.00017) (0.00488) (0.00620) (0.00051) (0.00063) (0.01857)

6 0.01059 0.48539 0.40039 0.02156 0.02605 0.61737 84,539.15
(0.00017) (0.00488) (0.00617) (0.00051) (0.00065) (0.01806)

7 0.01057 0.48589 0.40086 0.02136 0.02576 0.63723 84,539.85
(0.00017) (0.00488) (0.00615) (0.00051) (0.00063) (0.01889)

8 0.01057 0.48604 0.40089 0.02135 0.02578 0.63601 84,539.8
(0.00017) (0.00489) (0.00615) (0.00051) (0.00063) (0.01884)

9 0.01057 0.48515 0.39589 0.02165 0.02628 0.60433 84,537.75
(0.00017) (0.00489) (0.00613) (0.00052) (0.00067) (0.01752)

10 0.01056 0.48503 0.39566 0.02164 0.02626 0.60297 84,537.55
(0.00017) (0.00489) (0.00613) (0.00052) (0.00067) (0.01742)
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Table 29: Robustness Analysis (Multi-state model: k = 1 MLE Estimators by Changing
Initial a and b)

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σ̄ ∈ (0.000,0.100),
a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimization
method, which can perform a constrained optimization. In this table, I changed the initial
value of a and b with 0.10 ×n where n = {1,2,3, ...,10}. For example, the first result in
this table: σ̄ = 0.01041, â = 0.48919, b̂ = 0.39595, ψ̂u = 0.02077, ψ̂l = 0.02510, and
δ̂ = 0.68394 is the MLE estimators when the initial values are set such that: σ̄ = 0.010,
a = 0.10× n = 0.10× 1 = 0.10, b = 0.10× n = 0.10× 1 = 0.10, ψu = 0.02, ψl = 0.02,
δ = 0.60.

Initial Value 0.01 0.10×n 0.10×n 0.02 0.02 0.6
n ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.01041 0.48919 0.39595 0.02077 0.02510 0.68394 84,536.15
(0.00016) (0.00492) (0.00601) (0.00048) (0.00061) (0.02109)

2 0.01061 0.48373 0.40199 0.02105 0.02534 0.68173 84,537.4
(0.00017) (0.00486) (0.00616) (0.00049) (0.00061) (0.02105)

3 0.01060 0.48384 0.40144 0.02108 0.02542 0.66650 84,538.8
(0.00017) (0.00486) (0.00617) (0.00049) (0.00061) (0.02016)

4 0.01059 0.48534 0.40124 0.02137 0.02577 0.63906 84,539.85
(0.00017) (0.00488) (0.00616) (0.00051) (0.00063) (0.01900)

5 0.01056 0.48617 0.40101 0.02132 0.02573 0.63555 84,539.85
(0.00017) (0.00488) (0.00616) (0.00050) (0.00063) (0.01878)

6 0.01056 0.485552 0.40088 0.02129 0.02567 0.63786 84,539.85
(0.00017) (0.00487) (0.00616) (0.00050) (0.00063) (0.01884)

7 0.01068 0.47623 0.39487 0.02082 0.02518 0.71170 84,531.45
(0.00017) (0.00480) (0.00617) (0.00048) (0.00060) (0.02241)

8 0.01057 0.48602 0.40129 0.02133 0.02575 0.63789 84,539.85
(0.00017) (0.00488) (0.00616) (0.00050) (0.00063) (0.01892)

9 0.01057 0.485427 0.40473 0.02051 0.02467 0.78973 84,514.7
(0.00017) (0.00489) (0.00614) (0.00046) (0.00056) (0.02949)

10 0.01058 0.485451 0.40106 0.02135 0.02577 0.63734 84,539.85
(0.00017) (0.00488) (0.00616) (0.00051) (0.00063) (0.01888)
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Table 30: Robustness Analysis (Multi-state model: k = 1 MLE Estimators by Changing
Initial ψu and ψl)

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σ̄ ∈ (0.000,0.100),
a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimization
method, which can perform a constrained optimization. In this table, I changed the initial
value of ψu and ψl with 0.005 ×n where n = {1,2,3, ...,10}. For example, the first result
in this table: σ̄ = 0.01064, â = 0.48507, b̂ = 0.40355, ψ̂u = 0.02169, ψ̂l = 0.02616, and
δ̂ = 0.61363, is the MLE estimators when the initial values are set such that: σ̄ = 0.010,
a = 0.50, b = 0.40, ψu = 0.005× n = 0.005× 1 = 0.005, ψl = 0.005× n = 0.005× 1 =
0.005, δ = 0.60.

Initial Value 0.01 0.50 0.40 0.005×
n

0.005×
n

0.6

n ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.01064 0.48507 0.40355 0.02169 0.02616 0.61363 84,538.75
(0.00017) (0.00488) (0.00622) (0.00052) (0.00065) (0.01802)

2 0.01060 0.48522 0.40091 0.02163 0.02613 0.61128 84,538.7
(0.00017) (0.00488) (0.00619) (0.00052) (0.00065) (0.01781)

3 0.01059 0.48533 0.40077 0.02161 0.02612 0.61183 84,538.75
(0.00017) (0.00487) (0.00618) (0.00052) (0.00065) (0.01785)

4 0.01061 0.48519 0.40102 0.02165 0.02617 0.60959 84,538.55
(0.00017) (0.00488) (0.00619) (0.00052) (0.00065) (0.01777)

5 0.01049 0.49332 0.40768 0.02170 0.02610 0.59225 84,535.25
(0.00016) (0.00495) (0.00620) (0.00052) (0.00065) (0.01718)

6 0.01062 0.48765 0.40802 0.02162 0.02605 0.61286 84,538.2
(0.00017) (0.00489) (0.00625) (0.00051) (0.00064) (0.01800)

7 0.01059 0.48611 0.40215 0.02153 0.02599 0.62085 84,539.35
(0.00017) (0.0488) (0.00618) (0.00051) (0.00064) (0.01824)

8 0.01061 0.48793 0.40757 0.02169 0.02608 0.61006 84,538.05
(0.00017) (0.00490) (0.00624) (0.00052) (0.00064) (0.01791)

9 0.01059 0.48621 0.40297 0.02140 0.02581 0.63305 84,539.75
(0.00017) (0.00488) (0.00618) (0.00051) (0.00063) (0.01873)

10 0.01061 0.48742 0.40653 0.02170 0.02613 0.60751 84,538
(0.00017) (0.00489) (0.00624) (0.00052) (0.00065) (0.01779)
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Table 31: Robustness Analysis (Multi-state model: k = 1 MLE Estimators by Changing
Initial δ )

This table displays the model parameters from the maximum likelihood estimation over
T = 24,896 in-sample data. For the optimization, µ̂ = 0.000303 (long-run mean of re-
turn) is calibrated for all the models. To make the Hessian invertible during the optimiza-
tion, I also put optimization constraints of the form as following: σ̄ ∈ (0.000,0.100),
a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100), ψl ∈ (0.000,0.100), δ ∈
(0.000,1.000). Therefore, I use the method of Byrd et al. (1995) for the optimization
method, which can perform a constrained optimization. In this table, I changed the ini-
tial value of δ with 0.10 ×n where n = {1,2,3, ...,10}. For example, the first result in
this table: ˆ̄σ = 0.01058, â = 0.48526, b̂ = 0.40075, ψ̂u = 0.02131, ψ̂l = 0.02572, and
δ̂ = 0.64322, is the MLE estimators when the initial values are set such that: σ̄ = 0.010,
a = 0.50, b = 0.40, ψu = 0.02, ψl = 0.02, δ = 0.10×n = 0.10×1 = 0.10.

Initial Value 0.01 0.50 0.40 0.02 0.02 0.10×n
n ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.01058 0.48526 0.40075 0.02131 0.02572 0.64322 84,539.8
(0.00017) (0.00488) (0.00616) (0.00050) (0.00063) (0.01916)

2 0.01064 0.48259 0.40097 0.02144 0.02586 0.63537 84,539.6
(0.00017) (0.00485) (0.00620) (0.00051) (0.00064) (0.01878)

3 0.01058 0.48317 0.39649 0.02136 0.02584 0.63481 84,539.45
(0.00017) (0.00486) (0.00613) (0.00051) (0.00064) (0.01867)

4 0.01057 0.48609 0.40154 0.02137 0.02579 0.63575 84,539.8
(0.00017) (0.00488) (0.00616) (0.00051) (0.00063) (0.01885)

5 0.01072 0.47676 0.39084 0.02180 0.02658 0.60651 84,535.3
(0.00017) (0.00482) (0.00617) (0.00053) (0.00068) (0.01753)

6 0.01061 0.48532 0.40105 0.02165 0.02618 0.60949 84,538.55
(0.00017) (0.00488) (0.00619) (0.00052) (0.00065) (0.01777)

7 0.01062 0.48286 0.40199 0.02105 0.02535 0.67970 84,537.6
(0.00017) (0.00485) (0.00618) (0.00049) (0.00061) (0.02089)

8 0.01061 0.48538 0.40430 0.02139 0.02575 0.63895 84,539.7
(0.00017) (0.00487) (0.00621) (0.00051) (0.00063) (0.01901)

9 0.01058 0.48537 0.40118 0.02136 0.02577 0.63808 84,539.85
(0.00017) (0.00488) (0.00616) (0.00051) (0.00063) (0.01893)

10 0.01057 0.48573 0.40097 0.02134 0.02576 0.63734 84,539.85
(0.00017) (0.00488) (0.00616) (0.00051) (0.00063) (0.01888)
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Table 32: Robustness Analysis, Half Sample (Multi-state model: k = 1 MLE Estimators
by Changing Initial σ̄ )

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σ̄ ∈ (0.000,0.100), a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this table,
I changed the initial value of σ̄ with 0.0025 ×n where n = {1,2,3, ...,10}. For exam-
ple, the first result in the table: σ̄ = 0.00982, â = 0.46016, b̂ = 0.37968, ψ̂u = 0.01849,
ψ̂l = 0.02217, δ̂ = 0.64615 is the MLE estimator when the initial value is set such that:
σ̄ = 0.0025×n= 0.0025×1= 0.0025, a= 0.50, b= 0.40, ψu = 0.02, ψl = 0.02, δ = 0.60.

Initial Value 0.0025×
n

0.50 0.40 0.02 0.02 0.60

n ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.00982 0.46016 0.37968 0.01849 0.02217 0.64615 43,050.85
(0.00021) (0.00632) (0.00787) (0.00060) (0.00070) (0.02318)

2 0.00982 0.46006 0.37976 0.01849 0.02217 0.64628 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02319)

3 0.00983 0.45963 0.38050 0.01847 0.02213 0.64452 43,050.83
(0.00021) (0.00631) (0.00791) (0.00060) (0.00070) (0.02301)

4 0.00982 0.46016 0.37974 0.01849 0.02216 0.64647 43,050.85
(0.00023) (0.00961) (0.00945) (0.00060) (0.00068) (0.02435)

5 0.00981 0.46033 0.37977 0.01852 0.02220 0.64414 43,050.83
(0.00021) (0.00632) (0.00787) (0.00061) (0.00070) (0.02312)

6 0.00982 0.46006 0.37977 0.01849 0.02217 0.64624 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02319)

7 0.00982 0.46010 0.37977 0.01849 0.02217 0.64627 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02319)

8 0.00980 0.46037 0.37912 0.01848 0.02218 0.64407 43,050.85
(0.00021) (0.00631) (0.00786) (0.00060) (0.00070) (0.02309)

9 0.00980 0.46033 0.37938 0.01845 0.02211 0.64637 43,050.87
(0.00021) (0.00631) (0.00787) (0.00060) (0.00070) (0.02314)

10 0.00982 0.46006 0.37984 0.01849 0.02217 0.64651 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02321)
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Table 33: Robustness Analysis, Half Sample (Multi-state model: k = 1 MLE Estimators
by Changing Initial a and b)

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σ̄ ∈ (0.000,0.100), a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this table,
I changed the initial value of a and b with 0.10 ×n where n = {1,2,3, ...,10}. For exam-
ple, the first result in this table: σ̄ = 0.00982, â = 0.46041, b̂ = 0.37959, ψ̂u = 0.01853,
ψ̂l = 0.02221, and δ̂ = 0.64377 is the MLE estimators when the initial values are set such
that: σ̄ = 0.010, a= 0.10×n= 0.10×1= 0.10, b= 0.10×n= 0.10×1= 0.10, ψu = 0.02,
ψl = 0.02, δ = 0.60.

Initial Value 0.01 0.10×n 0.10×n 0.02 0.02 0.6
n ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.00982 0.46041 0.37959 0.01853 0.02221 0.64377 43,050.83
(0.00021) (0.00633) (0.00786) (0.00061) (0.00070) (0.02310)

2 0.00979 0.46082 0.37900 0.01843 0.02211 0.64538 43,050.87
(0.00021) (0.00632) (0.00786) (0.00060) (0.00070) (0.02308)

3 0.00982 0.46063 0.38046 0.01859 0.02228 0.63630 43,050.71
(0.00021) (0.00632) (0.00788) (0.00061) (0.00071) (0.02273)

4 0.00980 0.46052 0.37940 0.01847 0.02214 0.64563 43,050.86
(0.00021) (0.00632) (0.00786) (0.00060) (0.00070) (0.02312)

5 0.00981 0.46007 0.37877 0.01845 0.02213 0.64545 43,050.86
(0.00021) (0.00632) (0.00786) (0.00060) (0.00070) (0.02307)

6 0.00981 0.46032 0.37960 0.01844 0.02211 0.64853 43,050.86
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02325)

7 0.00980 0.45978 0.37956 0.01827 0.02195 0.65980 43,050.75
(0.00021) (0.00629) (0.00789) (0.00059) (0.00069) (0.02376)

8 0.00981 0.46018 0.37922 0.01842 0.02212 0.64549 43,050.86
(0.00021) (0.00632) (0.00787) (0.00060) (0.00070) (0.02304)

9 0.00982 0.46007 0.37975 0.01849 0.02217 0.64630 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02319)

10 0.00982 0.46020 0.37971 0.01848 0.02217 0.64629 43,050.85
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02319)

109



Table 34: Robustness Analysis, Half Sample (Multi-state model: k = 1 MLE Estimators
by Changing Initial ψu and ψl)

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σ̄ ∈ (0.000,0.100), a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this ta-
ble, I changed the initial value of ψu and ψl with 0.005 ×n where n = {1,2,3, ...,10}.
For example, the first result in this table: σ̄ = 0.00964, â = 0.48334, b̂ = 0.36951,
ψ̂u = 0.01768, ψ̂l = 0.01965, and δ̂ = 0.66561, is the MLE estimators when the initial val-
ues are set such that: σ̄ = 0.010, a = 0.50, b = 0.40, ψu = 0.005×n = 0.005×1 = 0.005,
ψl = 0.005×n = 0.005×1 = 0.005, δ = 0.60.

Initial Value 0.01 0.50 0.40 0.005×
n

0.005×
n

0.6

n ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.00980 0.45994 0.38010 0.01839 0.02200 0.65308 43,050.85
(0.00021) (0.00630) (0.00790) (0.00060) (0.00069) (0.02343)

2 0.00982 0.46006 0.37954 0.01853 0.02221 0.64489 43,050.83
(0.00021) (0.00632) (0.00786) (0.00061) (0.00070) (0.02317)

3 0.00982 0.46041 0.37907 0.01860 0.02231 0.63457 43,050.68
(0.00021) (0.00634) (0.00786) (0.00061) (0.00071) (0.02261)

4 0.00982 0.46004 0.37976 0.01850 0.02217 0.64681 43,050.84
(0.00021) (0.00632) (0.00787) (0.00060) (0.00070) (0.02324)

5 0.00982 0.46006 0.37975 0.01849 0.02217 0.64622 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02319)

6 0.00982 0.46013 0.37989 0.01849 0.02218 0.64591 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02318)

7 0.00982 0.46008 0.37984 0.01850 0.02218 0.64628 43,050.84
(0.00021) (0.00632) (0.00787) (0.00060) (0.00070) (0.02321)

8 0.00978 0.46096 0.37998 0.01844 0.02210 0.64609 43,050.87
(0.00021) (0.00630) (0.00788) (0.00060) (0.00070) (0.02316)

9 0.00982 0.46030 0.37990 0.01850 0.02219 0.64621 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02321)

10 0.00982 0.46009 0.37977 0.01849 0.02217 0.64638 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02320)
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Table 35: Robustness Analysis, Half Sample (Multi-state model: k = 1 MLE Estimators
by Changing Initial δ )

This table displays the model parameters from the maximum likelihood estimation over
T = 12,448 in-sample data. For the optimization, µ̂ = 0.000314 (long-run mean of re-
turn over the half sample period) is calibrated for all the models. To make the Hessian
invertible during the optimization, I also put optimization constraints of the form as fol-
lowing: σ̄ ∈ (0.000,0.100), a ∈ (0.000,1.000), b ∈ (0.000,1.000), ψu ∈ (0.000,0.100),
ψl ∈ (0.000,0.100), δ ∈ (0.000,1.000). Therefore, I use the method of Byrd et al. (1995)
for the optimization method, which can perform a constrained optimization. In this table, I
changed the initial value of δ with 0.10×n where n= {1,2,3, ...,10}. For example, the first
result in this table: ˆ̄σ = 0.00981, â = 0.46027, b̂ = 0.37977, ψ̂u = 0.01848, ψ̂l = 0.02216,
and δ̂ = 0.64763, is the MLE estimators when the initial values are set such that: σ̄ = 0.010,
a = 0.50, b = 0.40, ψu = 0.02, ψl = 0.02, δ = 0.10×n = 0.10×1 = 0.10.

Initial Value 0.01 0.50 0.40 0.02 0.02 0.10×n
n ˆ̄σ â b̂ ψ̂u ψ̂l δ̂ lnL

1 0.00981 0.46027 0.37977 0.01848 0.02216 0.64763 43,050.85
(0.00021) (0.00631) (0.00787) (0.00060) (0.00070) (0.02330)

2 0.00980 0.46070 0.38047 0.01846 0.02211 0.64478 43,050.85
(0.00021) (0.00632) (0.00789) (0.00060) (0.00070) (0.02305)

3 0.00982 0.46009 0.37982 0.01849 0.02217 0.64618 43,050.84
(0.00021) (0.00633) (0.00787) (0.00060) (0.00070) (0.02318)

4 0.00978 0.46105 0.37920 0.01842 0.02207 0.64717 43,050.88
(0.00021) (0.00631) (0.00786) (0.00060) (0.00070) (0.02317)

5 0.00981 0.46029 0.38000 0.01845 0.02212 0.64583 43,050.86
(0.00021) (0.00632) (0.00788) (0.00060) (0.00070) (0.02310)

6 0.00981 0.46006 0.37930 0.01849 0.02218 0.64636 43,050.85
(0.00021) (0.00632) (0.00786) (0.00060) (0.00070) (0.02322)

7 0.00982 0.46004 0.37938 0.01848 0.02215 0.64717 43,050.85
(0.00021) (0.00632) (0.00787) (0.00060) (0.00070) (0.02323)

8 0.00981 0.46014 0.38003 0.01838 0.02205 0.64731 43,050.87
(0.00021) (0.00631) (0.00790) (0.00060) (0.00070) (0.02307)

9 0.00982 0.45994 0.37972 0.01846 0.02215 0.64641 43,050.85
(0.00021) (0.00632) (0.00788) (0.00060) (0.00070) (0.02315)

10 0.00980 0.45982 0.37967 0.01839 0.02202 0.64849 43,050.87
(0.00021) (0.00630) (0.00790) (0.00060) (0.00069) (0.02313)
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Figure 1: Filtered States by Time-varying Transition Probability Markov Switching Model
(Three-state Model)
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(a) Observed Time Series

(b) Simulation from TVTP MS Model

(c) Simulation from CTP MS Model

(d) Simulation from GARCH(1,1) Model

Figure 2: Simulated Log Return Series (Three-state Model)
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Figure 3: Probability Integral Transform (Three-state Model: Short Day Horizons)

The above graphs are the probability integral transform of the forecast made by three mod-
els, the Time-varying Transition Probability Markov Switching (TVTP MS) Model, the
Constant Transition Probability Markov Switching (CTP MS) Model, and GARCH(1,1),
from top to bottom. For each model, the three graphs from left to right correspond to the
forecast for one day, five days, and ten days. In each graph, the red line indicates the uni-
form distribution, and the blue line indicates the +/- 5% level from the red line. If the model
is correctly specified, a produced probability integral transform becomes close to uniform
distribution (red line).
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Figure 4: Probability Integral Transform (Three-state Model: Long Day Horizons)

The above graphs are the probability integral transform of the forecast made by three mod-
els, the Time-varying Transition Probability Markov Switching (TVTP MS) Model, the
Constant Transition Probability Markov Switching (CTP MS) Model, and GARCH(1,1),
from top to bottom. For each model, the three graphs from left to right correspond to the
forecast for twenty day, forty days, and sixty days. In each graph, the red line indicates
the uniform distribution, and the blue line indicates the +/- 5% level from the red line. If
the model is correctly specified, a produced probability integral transform becomes close
to uniform distribution (red line).
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(a) Observed Time Series

(b) Simulation (k=1)

(c) Simulation (k=2)

(d) Simulation (k=3)

(e) Simulation (k=4)

(f) Simulation (k=5)

Figure 5: Simulated Log Return Series (Multi-state Model)

116



(a) Observed Time Series

(b) Simulation (k=6)

(c) Simulation (k=7)

(d) Simulation (k=8)

(e) Simulation (k=9)

(f) Simulation (k=10)

Figure 6: Simulated Log Return Series (Multi-state Model)
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k=1 k=2

k=3 k=4

k=5 k=6

k=7 k=8

k=9 k=10

Figure 7: Mincer-Zarnowitz Regression (Multi-state Model: One Day Horizon)

The above graphs are the graphical result of Mincer-Zarnowitz regression on the forecast
made by changing k from 1 to 10. In each graph, the x-axis is the realized volatility forecast
by the model, and the y-axis is the contemporaneous realized volatility from the historical
return. Every graph has the same scale of x-axis and y-axis. The blue diagonal line is the
regression line. The graph starts with k = 1,2, ... from the top left to k = 10 to the bottom
right.
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k=1 k=2

k=3 k=4

k=5 k=6

k=7 k=8

k=9 k=10

Figure 8: Mincer-Zarnowitz Regression (Multi-state Model: Five Day Horizon)

The above graphs are the graphical result of Mincer-Zarnowitz regression on the forecast
made by changing k from 1 to 10. In each graph, the x-axis is the realized volatility forecast
by the model, and the y-axis is the contemporaneous realized volatility from the historical
return. Every graph has the same scale of x-axis and y-axis. The blue diagonal line is the
regression line. The graph starts with k = 1,2, ... from the top left to k = 10 to the bottom
right.
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k=1 k=2

k=3 k=4

k=5 k=6

k=7 k=8

k=9 k=10

Figure 9: Mincer-Zarnowitz Regression (Multi-state Model: Ten Day Horizon)

The above graphs are the graphical result of Mincer-Zarnowitz regression on the forecast
made by changing k from 1 to 10. In each graph, the x-axis is the realized volatility forecast
by the model, and the y-axis is the contemporaneous realized volatility from the historical
return. Every graph has the same scale of x-axis and y-axis. The blue diagonal line is the
regression line. The graph starts with k = 1,2, ... from the top left to k = 10 to the bottom
right.
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k=1 k=2

k=3 k=4

k=5 k=6

k=7 k=8

k=9 k=10

Figure 10: Mincer-Zarnowitz Regression (Multi-state Model: Twenty Day Horizon)

The above graphs are the graphical result of Mincer-Zarnowitz regression on the forecast
made by changing k from 1 to 10. In each graph, the x-axis is the realized volatility forecast
by the model, and the y-axis is the contemporaneous realized volatility from the historical
return. Every graph has the same scale of x-axis and y-axis. The blue diagonal line is the
regression line. The graph starts with k = 1,2, ... from the top left to k = 10 to the bottom
right.
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k=1 k=2

k=3 k=4

k=5 k=6

k=7 k=8

k=9 k=10

Figure 11: Mincer-Zarnowitz Regression (Multi-state Model: Forty Day Horizon)

The above graphs are the graphical result of Mincer-Zarnowitz regression on the forecast
made by changing k from 1 to 10. In each graph, the x-axis is the realized volatility fore-
cast by the model, and the the y-axis is the contemporaneous realized volatility from the
historical return. Every graph has the same scale of x-axis and y-axis. The blue diagonal
line is the regression line. The graph starts with k = 1,2, ... from the top left to k = 10 to
the bottom right.
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k=1 k=2

k=3 k=4

k=5 k=6

k=7 k=8

k=9 k=10

Figure 12: Mincer-Zarnowitz Regression (Multi-state Model: Sixty Day Horizon)

The above graphs are the graphical result of Mincer-Zarnowitz regression on the forecast
made by changing k from 1 to 10. In each graph, the x-axis is the realized volatility fore-
cast by the model, and the the y-axis is the contemporaneous realized volatility from the
historical return. Every graph has the same scale of x-axis and y-axis. The blue diagonal
line is the regression line. The graph starts with k = 1,2, ... from the top left to k = 10 to
the bottom right.
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A. One Day
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B. Five Days
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Figure 13: Probability Integral Transform (Multi-state Model: Short Horizons)

The above graphs are the probability integral transform of the forecast made by changing
k from 1 to 10. Panel A is a one-day forecast, and panel B is a five-day forecast. The red
line indicates the uniform distribution in each graph, and the blue line indicates the +/- 5%
level from the red line. If the model is correctly specified, a produced probability integral
transform becomes close to uniform distribution (red line).
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C. Ten Days
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D. Twenty Days
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Figure 14: Probability Integral Transform (Multi-state Model: Middle Horizons)

The above graphs are the probability integral transform of the forecast made by changing
k from 1 to 10. Panel C is a ten-day forecast and panel D is a twenty-day forecast. For
each model, the three graphs from left to right correspond to the forecast for one day, five
days, and ten days. The red line indicates the uniform distribution in each graph, and the
blue line indicates the +/- 5% level from the red line. If the model is correctly specified, a
produced probability integral transform becomes close to uniform distribution (red line).
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E. Forty Days
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F. Sixty Days
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Figure 15: Probability Integral Transform (Multi-state Model: Long Horizons)

The above graphs are the probability integral transform of the forecast made by changing
k from 1 to 10. Panel E is a forty-day forecast and panel F is a sixty-day forecast. For
each model, the three graphs from left to right correspond to the forecast for one day, five
days, and ten days. The red line indicates the uniform distribution in each graph, and the
blue line indicates the +/- 5% level from the red line. If the model is correctly specified, a
produced probability integral transform becomes close to uniform distribution (red line).
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